Matrix Algebra
Theory, Computations, and Applications in Statistics
Seiten
2010
|
Softcover reprint of hardcover 1st ed. 2007
Springer-Verlag New York Inc.
978-1-4419-2424-7 (ISBN)
Springer-Verlag New York Inc.
978-1-4419-2424-7 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This much-needed work presents, among other things, the relevant aspects of the theory of matrix algebra for applications in statistics. Written in an informal style, it addresses computational issues and places more emphasis on applications than existing texts.
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.
Linear Algebra.- Basic Vector/Matrix Structure and Notation.- Vectors and Vector Spaces.- Basic Properties of Matrices.- Vector/Matrix Derivatives and Integrals.- Matrix Transformations and Factorizations.- Solution of Linear Systems.- Evaluation of Eigenvalues and Eigenvectors.- Applications in Data Analysis.- Special Matrices and Operations Useful in Modeling and Data Analysis.- Selected Applications in Statistics.- Numerical Methods and Software.- Numerical Methods.- Numerical Linear Algebra.- Software for Numerical Linear Algebra.
Erscheint lt. Verlag | 19.11.2010 |
---|---|
Reihe/Serie | Springer Texts in Statistics |
Zusatzinfo | XXII, 530 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 826 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
ISBN-10 | 1-4419-2424-8 / 1441924248 |
ISBN-13 | 978-1-4419-2424-7 / 9781441924247 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
REDLINE (Verlag)
CHF 27,95
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …
Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20