Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Nonparametric Functional Data Analysis - Frédéric Ferraty, Philippe Vieu

Nonparametric Functional Data Analysis

Theory and Practice
Buch | Softcover
260 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2006
Springer-Verlag New York Inc.
978-1-4419-2141-3 (ISBN)
CHF 194,70 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The companion Web site includes R and S-PLUS routines, command lines for reproducing examples presented in the book, and the functional datasets.

Rather than set application against theory, this book is really an interface of these two features of statistics.
Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. This book starts from theoretical foundations including functional nonparametric modeling, description of the mathematical framework, construction of the statistical methods, and statements of their asymptotic behaviors. It proceeds to computational issues including R and S-PLUS routines. Several functional datasets in chemometrics, econometrics, and pattern recognition are used to emphasize the wide scope of nonparametric functional data analysis in applied sciences. The companion Web site includes R and S-PLUS routines, command lines for reproducing examples presented in the book, and the functional datasets.





Rather than set application against theory, this book is really an interface of these two features of statistics. A special effort has been made in writing this book to accommodate several levels of reading. The computational aspects are oriented toward practitioners whereas open problems emerging from this new field of statistics will attract Ph.D. students and academic researchers. Finally, this book is also accessible to graduate students starting in the area of functional statistics.

Statistical Background for Nonparametric Statistics and Functional Data.- to Functional Nonparametric Statistics.- Some Functional Datasets and Associated Statistical Problematics.- What is a Well-Adapted Space for Functional Data?.- Local Weighting of Functional Variables.- Nonparametric Prediction from Functional Data.- Functional Nonparametric Prediction Methodologies.- Some Selected Asymptotics.- Computational Issues.- Nonparametric Classification of Functional Data.- Functional Nonparametric Supervised Classification.- Functional Nonparametric Unsupervised Classification.- Nonparametric Methods for Dependent Functional Data.- Mixing, Nonparametric and Functional Statistics.- Some Selected Asymptotics.- Application to Continuous Time Processes Prediction.- Conclusions.- Small Ball Probabilities and Semi-metrics.- Some Perspectives.

Erscheint lt. Verlag 24.11.2010
Reihe/Serie Springer Series in Statistics
Zusatzinfo XX, 260 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften Geologie
Technik Umwelttechnik / Biotechnologie
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-4419-2141-9 / 1441921419
ISBN-13 978-1-4419-2141-3 / 9781441921413
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95