An Invitation to 3-D Vision
Springer-Verlag New York Inc.
978-1-4419-1846-8 (ISBN)
1 Introduction.- 1.1 Visual perception from 2-D images to 3-D models.- 1.2 A mathematical approach.- 1.3 A historical perspective.- I Introductory Material.- 2 Representation of a Three-Dimensional Moving Scene.- 3 Image Formation.- 4 Image Primitives and Correspondence.- II Geometry of Two Views.- 5 Reconstruction from Two Calibrated Views.- 6 Reconstruction from Two Uncalibrated Views.- 7 Estimation of Multiple Motions from Two Views.- III Geometry of Multiple Views.- 8 Multiple-View Geometry of Points and Lines.- 9 Extension to General Incidence Relations.- 10 Geometry and Reconstruction from Symmetry.- IV Applications.- 11 Step-by-Step Building of a 3-D Model from Images.- 12 Visual Feedback.- V Appendices.- A Basic Facts from Linear Algebra.- A.1 Basic notions associated with a linear space.- A.1.1 Linear independence and change of basis.- A.1.2 Inner product and orthogonality.- A.1.3 Kronecker product and stack of matrices.- A.2 Linear transformations and matrix groups.- A.3 Gram-Schmidt and the QR decomposition.- A.4 Range, null space (kernel), rank and eigenvectors of a matrix.- A.5 Symmetric matrices and skew-symmetric matrices.- A.6 Lyapunov map and Lyapunov equation.- A.7 The singular value decomposition (SVD).- A.7.1 Algebraic derivation.- A.7.2 Geometric interpretation.- A.7.3 Some properties of the SVD.- B Least-Variance Estimation and Filtering.- B.1 Least-variance estimators of random vectors.- B.1.1 Projections onto the range of a random vector.- B.1.2 Solution for the linear (scalar) estimator.- B.1.3 Affine least-variance estimator.- B.1.4 Properties and interpretations of the least-variance estimator.- B.2 The Kalman-Bucy filter.- B.2.1 Linear Gaussian dynamical models.- B.2.2 A little intuition.- B.2.3 Observability.- B.2.4 Derivation of the Kalmanfilter.- B.3 The extended Kalman filter.- C Basic Facts from Nonlinear Optimization.- C.1 Unconstrained optimization: gradient-based methods.- C.1.1 Optimality conditions.- C.1.2 Algorithms.- C.2 Constrained optimization: Lagrange multiplier method..- C.2.1 Optimality conditions.- C.2.2 Algorithms.- References.- Glossary of Notation.
Erscheint lt. Verlag | 24.11.2010 |
---|---|
Reihe/Serie | Interdisciplinary Applied Mathematics ; 26 |
Zusatzinfo | XX, 528 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Grafik / Design ► Film- / Video-Bearbeitung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 1-4419-1846-9 / 1441918469 |
ISBN-13 | 978-1-4419-1846-8 / 9781441918468 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich