Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Geometric Design of Linkages

Buch | Hardcover
448 Seiten
2010 | 2nd ed. 2011
Springer-Verlag New York Inc.
978-1-4419-7891-2 (ISBN)

Lese- und Medienproben

Geometric Design of Linkages - J. Michael McCarthy, Gim Song Soh
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector.
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems.

This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems.  The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory.

J. Michael McCarthy is a Professor in the Department of Mechanical Engineering at University of California, Irvine.

Introduction.- Analysis of Planar Linkages.- Graphical Synthesis in the Plane.- Planar Kinematics.- Algebraic Synthesis of Planar.- Multiloop Planar Linkages.- Analysis of Spherical Linkages.- Spherical Kinematics.- Algebraic Synthesis of Spherical Chains.- Multiloop Spherical.- Analysis of Spatial Chains.- Spatial Kinematics.- Algebraic Synthesis of Spatial.- Synthesis of Spatial Chains with Reachable Surface.- Clifford Algebra Synthesis of Spatial Chains.- Platform Manipulators.- References.

Erscheint lt. Verlag 2.12.2010
Reihe/Serie Interdisciplinary Applied Mathematics ; 11
Zusatzinfo XXVIII, 448 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Geometrie / Topologie
Technik Elektrotechnik / Energietechnik
ISBN-10 1-4419-7891-7 / 1441978917
ISBN-13 978-1-4419-7891-2 / 9781441978912
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20