Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Sentiment Analysis and its Application in Educational Data Mining - Soni Sweta

Sentiment Analysis and its Application in Educational Data Mining (eBook)

(Autor)

eBook Download: PDF
2024 | 2024
XXI, 97 Seiten
Springer Nature Singapore (Verlag)
978-981-97-2474-1 (ISBN)
Systemvoraussetzungen
48,14 inkl. MwSt
(CHF 46,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The book delves into the fundamental concepts of sentiment analysis, its techniques, and its practical applications in the context of educational data. The book begins by introducing the concept of sentiment analysis and its relevance in educational settings. It provides a thorough overview of the various techniques used for sentiment analysis, including natural language processing, machine learning, and deep learning algorithms. The subsequent chapters explore applications of sentiment analysis in educational data mining across multiple domains. The book illustrates how sentiment analysis can be employed to analyze student feedback and sentiment patterns, enabling educators to gain valuable insights into student engagement, motivation, and satisfaction. It also examines how sentiment analysis can be used to identify and address students' emotional states, such as stress, boredom, or confusion, leading to more personalized and effective interventions. Furthermore, the book explores the integration of sentiment analysis with other educational data mining techniques, such as clustering, classification, and predictive modeling. It showcases real-world case studies and examples that demonstrate how sentiment analysis can be combined with these approaches to improve educational decision-making, curriculum design, and adaptive learning systems.



Dr. Soni Sweta, Ph.D. in Computer Science and Engineering from BIT, Mesra, Ranchi, is presently working as an assistant professor in the Department of Computer Science and Engineering at Mukesh Patel School of Technology, Management, and Engineering, NMIMS, Mumbai Campus, Mumbai, Maharashtra. She received her Master of Technology degree from Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal. She is presently guiding many Ph.D., M.Tech, M.C.A, and B.Tech. Scholars. Previously, she had guided many M.Tech., M.C.A, B.C.A, and B.Tech. students in their dissertation and final project work. Her present areas of research are artificial intelligence, natural language processing, soft computing, data mining, machine learning, data science, etc. Being a member of IEEE and life member of CSI(India), she is associated with few reputed journals as a reviewer and member of editorial board. She has acted as a technical committee member in many reputed conferences so far.


The book delves into the fundamental concepts of sentiment analysis, its techniques, and its practical applications in the context of educational data. The book begins by introducing the concept of sentiment analysis and its relevance in educational settings. It provides a thorough overview of the various techniques used for sentiment analysis, including natural language processing, machine learning, and deep learning algorithms. The subsequent chapters explore applications of sentiment analysis in educational data mining across multiple domains. The book illustrates how sentiment analysis can be employed to analyze student feedback and sentiment patterns, enabling educators to gain valuable insights into student engagement, motivation, and satisfaction. It also examines how sentiment analysis can be used to identify and address students' emotional states, such as stress, boredom, or confusion, leading to more personalized and effective interventions. Furthermore, the book explores the integration of sentiment analysis with other educational data mining techniques, such as clustering, classification, and predictive modeling. It showcases real-world case studies and examples that demonstrate how sentiment analysis can be combined with these approaches to improve educational decision-making, curriculum design, and adaptive learning systems.
Erscheint lt. Verlag 20.4.2024
Reihe/Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Computational Intelligence
Zusatzinfo XXI, 97 p. 8 illus., 6 illus. in color.
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Sozialwissenschaften Pädagogik
Technik Bauwesen
Schlagworte Deep learning • Educational Datamining • Natural Language Processing • Opinion Mining • sentiment analysis • Soft Computing • Text Mining
ISBN-10 981-97-2474-0 / 9819724740
ISBN-13 978-981-97-2474-1 / 9789819724741
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
CHF 24,40