Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Data Analytics for the Social Sciences - G. David Garson

Data Analytics for the Social Sciences

Applications in R

(Autor)

Buch | Hardcover
686 Seiten
2021
Routledge (Verlag)
978-0-367-62429-3 (ISBN)
CHF 418,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book presents a complete exploration of statistical data analysis in R for a wide variety of social science disciplines and quantitative methods courses.
Data Analytics for the Social Sciences is an introductory, graduate-level treatment of data analytics for social science. It features applications in the R language, arguably the fastest growing and leading statistical tool for researchers.

The book starts with an ethics chapter on the uses and potential abuses of data analytics. Chapters 2 and 3 show how to implement a broad range of statistical procedures in R. Chapters 4 and 5 deal with regression and classification trees and with random forests. Chapter 6 deals with machine learning models and the "caret" package, which makes available to the researcher hundreds of models. Chapter 7 deals with neural network analysis, and Chapter 8 deals with network analysis and visualization of network data. A final chapter treats text analysis, including web scraping, comparative word frequency tables, word clouds, word maps, sentiment analysis, topic analysis, and more. All empirical chapters have two "Quick Start" exercises designed to allow quick immersion in chapter topics, followed by "In Depth" coverage. Data are available for all examples and runnable R code is provided in a "Command Summary". An appendix provides an extended tutorial on R and RStudio. Almost 30 online supplements provide information for the complete book, "books within the book" on a variety of topics, such as agent-based modeling.

Rather than focusing on equations, derivations, and proofs, this book emphasizes hands-on obtaining of output for various social science models and how to interpret the output. It is suitable for all advanced level undergraduate and graduate students learning statistical data analysis.

G. David Garson teaches advanced research methodology in the School of Public and International Affairs, North Carolina State University, USA. Founder and longtime editor emeritus of the Social Science Computer Review, he is president of Statistical Associates Publishing, which provides free digital texts worldwide. His degrees are from Princeton University (BA, 1965) and Harvard University (PhD, 1969).

1. Using and Abusing Data Analytics in Social Science 2. Statistical Analytics with R, Part 1 3. Statistical Analytics with R, Part 2 4. Classification and Regression Trees in R 5. Random Forests 6. Modeling and Machine Learning 7. Neural Network Models and Deep Learning 8. Network Analysis 9. Text Analytics; Appendix 1. Introduction to R and R Studio Appendix 2. Data Used in this Book

Erscheinungsdatum
Zusatzinfo 163 Halftones, color; 163 Illustrations, color
Verlagsort London
Sprache englisch
Maße 210 x 280 mm
Gewicht 2100 g
Themenwelt Geisteswissenschaften Psychologie Allgemeine Psychologie
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Sozialwissenschaften Pädagogik Erwachsenenbildung
ISBN-10 0-367-62429-X / 036762429X
ISBN-13 978-0-367-62429-3 / 9780367624293
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Grundkurs

von E. Bruce Goldstein; Laura Cacciamani; Karl R. Gegenfurtner

Buch | Hardcover (2023)
Springer (Verlag)
CHF 83,95