Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Learning to Play - Aske Plaat

Learning to Play

Reinforcement Learning and Games

(Autor)

Buch | Hardcover
XIII, 330 Seiten
2020 | 1st ed. 2020
Springer International Publishing (Verlag)
978-3-030-59237-0 (ISBN)
CHF 104,80 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
In this textbook the author takes as inspiration recent breakthroughs in game playing to explain how and why deep reinforcement learning works. In particular he shows why two-person games of tactics and strategy fascinate scientists, programmers, and game enthusiasts and unite them in a common goal: to create artificial intelligence (AI). 
After an introduction to the core concepts, environment, and communities of intelligence and games, the book is organized into chapters on reinforcement learning, heuristic planning, adaptive sampling, function approximation, and self-play. The author takes a hands-on approach throughout, with Python code examples and exercises that help the reader understand how AI learns to play. He also supports the main text with detailed pointers to online machine learning frameworks, technical details for AlphaGo, notes on how to play and program Go and chess, and a comprehensive bibliography.
The content is class-tested and suitable for advanced undergraduate and graduate courses on artificial intelligence and games. It's also appropriate for self-study by professionals engaged with applications of machine learning and with games development. Finally it's valuable for any reader engaged with the philosophical implications of artificial and general intelligence, games represent a modern Turing test of the power and limitations of AI.

Prof. Aske Plaat is Professor of Data Science at Leiden University and scientific director of the Leiden Institute of Advanced Computer Science (LIACS). He is co-founder of the Leiden Centre of Data Science (LCDR) and initiated the SAILS stimulation program. His research interests include reinforcement learning, scalable combinatorial reasoning algorithms, games and self-learning systems.

Introduction.- Intelligence and Games.- Reinforcement Learning.- Heuristic Planning.- Adaptive Sampling.- Function Approximation.- Self-Play.- Conclusion.- App. A, Deep Reinforcement Learning Environments.- App. B, Running Python.- App. C, Tutorial for the Game of Go.- App. D, AlphaGo Technical Details.- References.- List of Figures.- List of Tables.- List of Algorithms.- Index.

Erscheinungsdatum
Zusatzinfo XIII, 330 p. 111 illus., 72 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 682 g
Themenwelt Informatik Software Entwicklung Spieleprogrammierung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Sozialwissenschaften Kommunikation / Medien Medienwissenschaft
Schlagworte Adaptive sampling • AlphaGo • Artificial Intelligence • Computational Intelligence • Deep learning • Evolutionary Computing • Games • Go • Heuristics • machine learning • Markov Decision Processes • Reinforcement Learning
ISBN-10 3-030-59237-5 / 3030592375
ISBN-13 978-3-030-59237-0 / 9783030592370
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
2D- und 3D-Spiele entwickeln

von Thomas Theis

Buch | Softcover (2023)
Rheinwerk (Verlag)
CHF 41,85