Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Empirical Likelihood and Quantile Methods for Time Series -  Fumiya Akashi,  Yan Liu,  Masanobu Taniguchi

Empirical Likelihood and Quantile Methods for Time Series (eBook)

Efficiency, Robustness, Optimality, and Prediction
eBook Download: PDF
2018 | 1st ed. 2018
X, 136 Seiten
Springer Singapore (Verlag)
978-981-10-0152-9 (ISBN)
Systemvoraussetzungen
58,84 inkl. MwSt
(CHF 57,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book integrates the fundamentals of asymptotic theory of statistical inference for time series under nonstandard settings, e.g., infinite variance processes, not only from the point of view of efficiency but also from that of robustness and optimality by minimizing prediction error. This is the first book to consider the generalized empirical likelihood applied to time series models in frequency domain and also the estimation motivated by minimizing quantile prediction error without assumption of true model. It provides the reader with a new horizon for understanding the prediction problem that occurs in time series modeling and a contemporary approach of hypothesis testing by the generalized empirical likelihood method. Nonparametric aspects of the methods proposed in this book also satisfactorily address economic and financial problems without imposing redundantly strong restrictions on the model, which has been true until now. Dealing with infinite variance processes makes analysis of economic and financial data more accurate under the existing results from the demonstrative research. The scope of applications, however, is expected to apply to much broader academic fields. The methods are also sufficiently flexible in that they represent an advanced and unified development of prediction form including multiple-point extrapolation, interpolation, and other incomplete past forecastings. Consequently, they lead readers to a good combination of efficient and robust estimate and test, and discriminate pivotal quantities contained in realistic time series models.



Yan Liu, Dr., Waseda University, y.liu2@kurenai.waseda.jp, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Fumiya Akashi, Dr., Waseda University, f.akashi@kurenai.waseda.jp, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Masanobu Taniguchi, Professor, Research Importance Position, Research Institute for Science & Engineering, Waseda University, taniguchi@waseda.jp, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan


This book integrates the fundamentals of asymptotic theory of statistical inference for time series under nonstandard settings, e.g., infinite variance processes, not only from the point of view of efficiency but also from that of robustness and optimality by minimizing prediction error. This is the first book to consider the generalized empirical likelihood applied to time series models in frequency domain and also the estimation motivated by minimizing quantile prediction error without assumption of true model. It provides the reader with a new horizon for understanding the prediction problem that occurs in time series modeling and a contemporary approach of hypothesis testing by the generalized empirical likelihood method. Nonparametric aspects of the methods proposed in this book also satisfactorily address economic and financial problems without imposing redundantly strong restrictions on the model, which has been true until now. Dealing with infinite variance processes makesanalysis of economic and financial data more accurate under the existing results from the demonstrative research. The scope of applications, however, is expected to apply to much broader academic fields. The methods are also sufficiently flexible in that they represent an advanced and unified development of prediction form including multiple-point extrapolation, interpolation, and other incomplete past forecastings. Consequently, they lead readers to a good combination of efficient and robust estimate and test, and discriminate pivotal quantities contained in realistic time series models.

Yan Liu, Dr., Waseda University, y.liu2@kurenai.waseda.jp, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, JapanFumiya Akashi, Dr., Waseda University, f.akashi@kurenai.waseda.jp, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, JapanMasanobu Taniguchi, Professor, Research Importance Position, Research Institute for Science & Engineering, Waseda University, taniguchi@waseda.jp, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Chapter 1. Introduction to Nonstandard Analysis in Time Series Analysis.- Chapter 2. Parameter Estimation by Quantile Prediction Error.- Chapter 3. Hypotheses Testing by Generalized Empirical Likelihood for Stable Processes.- Chapter 4. Higher Order Efficiency of Generalized Empirical Likelihood for Dependent Data.- Chapter 5. Robust Aspects of Empirical Likelihood for Unified Prediction Error.- Chapter 6. Applications.

Erscheint lt. Verlag 5.12.2018
Reihe/Serie JSS Research Series in Statistics
JSS Research Series in Statistics
JSS Research Series in Statistics
SpringerBriefs in Statistics
SpringerBriefs in Statistics
Zusatzinfo X, 136 p. 10 illus., 9 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Sozialwissenschaften Soziologie Empirische Sozialforschung
Wirtschaft Volkswirtschaftslehre Ökonometrie
Schlagworte Efficiency • empirical likelihood • Heavy Tail • Quantile Score • Robustness
ISBN-10 981-10-0152-9 / 9811001529
ISBN-13 978-981-10-0152-9 / 9789811001529
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich