Matrix-Based Introduction to Multivariate Data Analysis
Springer Verlag, Singapore
978-981-10-9595-5 (ISBN)
Kohei Adachi, Graduate School of Human Sciences, Osaka University
Part 1. Elementary Statistics with Matrices.- 1 Introduction to Matrix Operations.- 2 Intra-variable Statistics.- 3 Inter-variable Statistics.- Part 2. Least Squares Procedures.- 4 Regression Analysis.- 5 Principal Component Analysis (Part 1).- 6 Principal Component Analysis 2 (Part 2).- 7 Cluster Analysis.- Part 3. Maximum Likelihood Procedures.- 8 Maximum Likelihood and Normal Distributions.- 9 Path Analysis.- 10 Confirmatory Factor Analysis.- 11 Structural Equation Modeling.- 12 Exploratory Factor Analysis.- Part 4. Miscellaneous Procedures.- 13 Rotation Techniques.- 14 Canonical Correlation and Multiple Correspondence Analyses.- 15 Discriminant Analysis.- 16 Multidimensional Scaling.- Appendices.- A1 Geometric Understanding of Matrices and Vectors.- A2 Decomposition of Sums of Squares.- A3 Singular Value Decomposition (SVD).- A4 Matrix Computation Using SVD.- A5 Supplements for Probability Densities and Likelihoods.- A6 Iterative Algorithms.- References.- Index.
Erscheinungsdatum | 20.07.2018 |
---|---|
Zusatzinfo | 8 Illustrations, color; 47 Illustrations, black and white; XIII, 301 p. 55 illus., 8 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Computerprogramme / Computeralgebra |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Sozialwissenschaften ► Soziologie ► Empirische Sozialforschung | |
ISBN-10 | 981-10-9595-7 / 9811095957 |
ISBN-13 | 978-981-10-9595-5 / 9789811095955 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich