Longitudinal Categorical Data Analysis (eBook)
XVIII, 369 Seiten
Springer New York (Verlag)
978-1-4939-2137-9 (ISBN)
The book is technically rigorous, and, it also presents illustrations of the statistical analysis of various real life data involving univariate multinomial responses both in cross-sectional and longitudinal setups. This book is written mainly for the graduate students and researchers in statistics and social sciences, among other applied statistics research areas. However, the rest of the book, specifically the chapters from 1 to 3, may also be used for a senior undergraduate course in statistics.
Brajendra Sutradhar is a University Research Professor at Memorial University in St. John's, Canada. He is author of the book Dynamic Mixed Models for Familial Longitudinal Data, published in 2011 by Springer, New York. Also, he edited the special issue of the Canadian Journal of Statistics (2010, Vol. 38, June Issue, John Wiley) and the Lecture Notes in Statistics (2013, Vol. 211, Springer), with selected papers from two symposiums: ISS-2009 and ISS-2012, respectively.
This is the first book in longitudinal categorical data analysis with parametric correlation models developed based on dynamic relationships among repeated categorical responses. This book is a natural generalization of the longitudinal binary data analysis to the multinomial data setup with more than two categories. Thus, unlike the existing books on cross-sectional categorical data analysis using log linear models, this book uses multinomial probability models both in cross-sectional and longitudinal setups. A theoretical foundation is provided for the analysis of univariate multinomial responses, by developing models systematically for the cases with no covariates as well as categorical covariates, both in cross-sectional and longitudinal setups. In the longitudinal setup, both stationary and non-stationary covariates are considered. These models have also been extended to the bivariate multinomial setup along with suitable covariates. For the inferences, the book uses the generalized quasi-likelihood as well as the exact likelihood approaches.The book is technically rigorous, and, it also presents illustrations of the statistical analysis of various real life data involving univariate multinomial responses both in cross-sectional and longitudinal setups. This book is written mainly for the graduate students and researchers in statistics and social sciences, among other applied statistics research areas. However, the rest of the book, specifically the chapters from 1 to 3, may also be used for a senior undergraduate course in statistics.
Brajendra Sutradhar is a University Research Professor at Memorial University in St. John's, Canada. He is author of the book Dynamic Mixed Models for Familial Longitudinal Data, published in 2011 by Springer, New York. Also, he edited the special issue of the Canadian Journal of Statistics (2010, Vol. 38, June Issue, John Wiley) and the Lecture Notes in Statistics (2013, Vol. 211, Springer), with selected papers from two symposiums: ISS-2009 and ISS-2012, respectively.
Introduction.- Overview of Regression Models for Cross-sectional Univariate Categorical Data.- Regression Models for Univariate Longitudinal Stationary Categorical Data.- Regression Models for Univariate Longitudinal Non-stationary Categorical Data.- Multinomial Models for Cross-sectional Bivariate Categorical Data.- Multinomial Models for Longitudinal Bivariate Categorical Data.- Index.
Erscheint lt. Verlag | 30.10.2014 |
---|---|
Reihe/Serie | Springer Series in Statistics | Springer Series in Statistics |
Zusatzinfo | XVIII, 369 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Sozialwissenschaften ► Soziologie ► Empirische Sozialforschung | |
Technik | |
Schlagworte | categorical data analysis • Exact likelihood approaches • Generalized quasi-likelihood • Longitudinal binary data analysis • Multinomial models • Mutlinomial probability • Parametric correlation models • Regression models for data analysis • Statistical Inference |
ISBN-10 | 1-4939-2137-1 / 1493921371 |
ISBN-13 | 978-1-4939-2137-9 / 9781493921379 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich