Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Strength or Accuracy: Credit Assignment in Learning Classifier Systems - Tim Kovacs

Strength or Accuracy: Credit Assignment in Learning Classifier Systems

(Autor)

Buch | Softcover
307 Seiten
2012 | Softcover reprint of the original 1st ed. 2004
Springer London Ltd (Verlag)
978-1-4471-1058-3 (ISBN)
CHF 209,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Classifier systems are an intriguing approach to a broad range of machine learning problems, based on automated generation and evaluation of condi­ tion/action rules. Inreinforcement learning tasks they simultaneously address the two major problems of learning a policy and generalising over it (and re­ lated objects, such as value functions). Despite over 20 years of research, however, classifier systems have met with mixed success, for reasons which were often unclear. Finally, in 1995 Stewart Wilson claimed a long-awaited breakthrough with his XCS system, which differs from earlier classifier sys­ tems in a number of respects, the most significant of which is the way in which it calculates the value of rules for use by the rule generation system. Specifically, XCS (like most classifiersystems) employs a genetic algorithm for rule generation, and the way in whichit calculates rule fitness differsfrom earlier systems. Wilson described XCS as an accuracy-based classifiersystem and earlier systems as strength-based. The two differin that in strength-based systems the fitness of a rule is proportional to the return (reward/payoff) it receives, whereas in XCS it is a function of the accuracy with which return is predicted. The difference is thus one of credit assignment, that is, of how a rule's contribution to the system's performance is estimated. XCS is a Q­ learning system; in fact, it is a proper generalisation of tabular Q-learning, in which rules aggregate states and actions. In XCS, as in other Q-learners, Q-valuesare used to weightaction selection.

Introduction.- Learning Classifier Systems.- How Strength and Accuracy Differ.- What Should a Classifier System Learn?- Prospects for Adaption.- Classifier Systems and Q-Learning.- Conclusion.- Appendices.- Evaluation of Macroclassifiers.- Example XCS Cycle.- Learning from Reinforcement.- Generalisation Problems.- Value Estimation Algorithms.- Generalised Policy Iteration Algorithms.- Evolutionary Algorithms.- The Origins of Sarsa.- Notation.- References.

Reihe/Serie Distinguished Dissertations
Zusatzinfo XVI, 307 p.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Office Programme Outlook
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Sozialwissenschaften Politik / Verwaltung Staat / Verwaltung
ISBN-10 1-4471-1058-7 / 1447110587
ISBN-13 978-1-4471-1058-3 / 9781447110583
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich