Teaching Student-Centered Mathematics
Pearson
978-0-13-455639-0 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
MARKET: Grade 6-8 mathematics teachers
The late John A. Van de Walle was a professor emeritus at Virginia Commonwealth University. He was a mathematics education consultant who regularly gave professional development workshops for K—8 teachers in the United States and Canada. He visited and taught in elementary school classrooms and worked with teachers to implement student-centered math lessons. He co-authored the Scott Foresman-Addison Wesley Mathematics K—6 series and contributed to the Pearson School mathematics program, enVisionMATH. In addition, he wrote numerous chapters and articles for the National Council of Teachers of Mathematics (NCTM) books and journals and was very active in NCTM, including serving on the Board of Directors, as the chair of the Educational Materials Committee, and as a frequent speaker at national and regional meetings. LouAnn H. Lovin is a professor of mathematics education at James Madison University (Virginia). She co-authored the first edition of the Teaching Student - Centered Mathematics Professional Development Series with John A. Van de Walle as well as Teaching Mathematics Meaningfully: Solutions for Reaching Struggling Learners, 2nd Edition with David Allsopp and Sarah Vaningen. LouAnn taught mathematics to middle and high school students before transitioning to pre-K—grade 8. For almost twenty years, she has worked in pre-K through grade 8 classrooms and engaged with teachers in professional development as they implement a studentcentered approach to teaching mathematics. She has published articles in Teaching Children Mathematics, Mathematics Teaching in the Middle School, and Teaching Exceptional Children and has served on NCTM’s Educational Materials Committee. LouAnn’s research on teachers’ mathematical knowledge for teaching has focused most recently on the developmental nature of prospective teachers’ fraction knowledge. Karen S. Karp is at the School of Education at Johns Hopkins University-Baltimore, MD. Previously, she was a professor of mathematics education at the University of Louisville for more than twenty years. Prior to entering the field of teacher education she was an elementary school teacher in New York. She is also co-author of Elementary and Middle School Mathematics: Teaching Developmentally, Developing Essential Understanding of Addition and Subtraction for Teaching Mathematics in Pre-K—Grade 2, and numerous book chapters and articles. She is a former member of the Board of Directors of NCTM and a former president of the Association of Mathematics Teacher Educators (AMTE). She continues to work in classrooms to support teachers of students with disabilities in their mathematics instruction. Jennifer M. Bay - Williams is a professor of mathematics education at the University of Louisville (Kentucky). Jennifer has published many articles on teaching and learning in NCTM journals. She has also coauthored numerous books, including Mathematics Coaching: Resources and Tools for Coaches and Leaders, K—12; Developing Essential Understanding of Addition and Subtraction for Teaching Mathematics in Pre-K—Grade 2; Math and Literature: Grades 6—8; Math and Nonfiction: Grades 6—8; and Navigating through Connections in Grades 6—8. Jennifer taught elementary, middle, and high school in Missouri and in Peru, and continues to work in classrooms at all levels with students and with teachers. Jennifer served as member of Board of Directors for TODOS: Equity for All, as president of AMTE, and as editor for the 2012 NCTM Yearbook.
Brief Table of Contents
Part 1: Establishing a Student-Centered Environment
1 Setting a Vision for Learning High-Quality Mathematics
2 Teaching Mathematics through Problem Solving
3 Creating Assessments for Learning
4 Differentiating Instruction
5 Teaching Culturally and Linguistically Diverse Children
6 Planning, Teaching, and Assessing Children with Exceptionalities
7 Collaborating with Families and Other Stakeholders
Part 2: Teaching Student-Centered Mathematics
8 Fraction Concepts and Computation
9 Decimal Concepts and Computation
10 The Number System
11 Ratios and Proportional Relationships
12 Algebraic Thinking: Expressions, Equations, and Functions
13 Developing Geometry Concepts
14 Exploring Measurement Concepts
15 Working with Data and Doing Statistics
16 Investigating Concepts of Probability
Appendix A Common Core State Standards: Standards for Mathematical Practice
Appendix B Common Core State Standards: Grades 6—8 Critical Content Areas and Overviews
Appendix C Mathematics Teaching Practices: NCTM Principles to Actions (2014)
Appendix D Activities at a Glance: Volume III
Appendix E Guide to Blackline Masters
References
Index
Detailed Table of Contents
Part 1: Establishing a Student-Centered Environment
1 Setting a Vision for Learning High-Quality Mathematics
Understanding and Doing Mathematics
How Do Students Learn?
Teaching for Understanding
The Importance of Students’ Ideas
Mathematics Classrooms That Promote Understanding
2 Teaching Mathematics through Problem Solving
Teaching through Problem Solving: An Upside-Down Approach
Mathematics Teaching Practices for Teaching through Problem Solving
Using Worthwhile Tasks
Orchestrating Classroom Discourse
Representations: Tools for Problem Solving, Reasoning, and Communication
Lessons in the Problem-Based Classroom
Life-Long Learning: An Invitation to Learn and Grow
3 Creating Assessments for Learning
Assessment That Informs Instruction
Observations
Questions
Interviews
Tasks
Students’ Self-Assessment and Reflection
Rubrics and Their Uses
4 Differentiating Instruction
Differentiation and Teaching Mathematics through Problem Solving
The Nuts and Bolts of Differentiating Instruction
Differentiated Tasks for Whole-Class Instruction
Tiered Lessons
Flexible Grouping
5 Teaching Culturally and Linguistically Diverse Students
Culturally and Linguistically Diverse Students
Culturally Responsive Mathematics Instruction
Teaching Strategies that Support Culturally and Linguistically Diverse Students
Assessment Considerations for ELLs
6 Planning, Teaching, and Assessing Students with Exceptionalities
Instructional Principles for Diverse Learners
Implementing Interventions
Teaching and Assessing Students with Learning Disabilities
Adapting for Students with Moderate/Severe Disabilities
Planning for Students Who Are Mathematically Gifted
7 Collaborating with Families and Other Stakeholders
Sharing the Message with Stakeholders
Administrator Engagement and Support
Family Engagement
Homework Practices and Parent Coaching
Part 2: Teaching Student-Centered Mathematics
8 Fraction Concepts and Computation
Meanings of Fractions
Partitioning and Iterating
Fraction Equivalencies
Comparing Fractions
Understanding Fraction Operations
Addition and Subtraction
Multiplication
Division
Teaching Fractions Effectively
Literature Connections
9 Decimal Concepts and Computation
Extending the Place-Value System
Connecting Fractions and Decimals
Emphasizing Equivalence between Fractions and Decimals
Comparing and Ordering Decimal Fractions
Addition and Subtraction
Multiplication
Division
Percents
10 The Number System
Exponents
Positive and Negative Numbers
Operations with Positive and Negative Numbers
Real Numbers
Literature Connections
11 Ratios and Proportional Relationships
Ratios
Proportional Reasoning
Covariation in Algebra
Strategies for Solving Proportional Situations
Teaching Proportional Reasoning
Literature Connections
12 Algebraic Thinking: Expressions, Equations, and Functions
Structure in the Number System: Connecting Number and Algebra
Structure in the Number System: Properties
Patterns and Functions
Meaningful Use of Symbols
Mathematical Modeling
Algebraic Thinking across the Curriculum
Literature Connections
13 Developing Geometry Concepts
Developing Geometric Thinking
Shapes and Properties
Transformations
Location
Visualization
Literature Connections
14 Exploring Measurement Concepts
Foundations of Measuring
Angles
Area
Volume and Capacity
Literature Connections
15 Working with Data and Doing Statistics
What Does It Mean to Do Statistics?
Formulating Questions
Collecting Data
Analyzing Data: Graphs
Analyzing Data: Measures of Center and Variability
Interpreting Results
Literature Connections
16 Investigating Concepts of Probability
Introducing Probability
Theoretical Probability and Experiments
Sample Spaces and the Probability of Compound Events
Simulations
Common Misconceptions about Probability
Literature Connections
Appendix A Common Core State Standards: Standards for Mathematical Practice
Appendix B Common Core State Standards: Grades 6—8 Critical Content Areas and Overviews
Appendix C Mathematics Teaching Practices: NCTM Principles to Actions (2014)
Appendix D Activities at a Glance: Volume III
Appendix E Guide to Blackline Masters
References
Index
Erscheint lt. Verlag | 28.5.2018 |
---|---|
Sprache | englisch |
Maße | 216 x 279 mm |
Gewicht | 14 g |
Themenwelt | Schulbuch / Wörterbuch |
Sozialwissenschaften ► Pädagogik ► Schulpädagogik / Grundschule | |
ISBN-10 | 0-13-455639-9 / 0134556399 |
ISBN-13 | 978-0-13-455639-0 / 9780134556390 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich