Handbook on the Physics and Chemistry of Rare Earths (eBook)
536 Seiten
Elsevier Science (Verlag)
978-0-08-045714-7 (ISBN)
This volume of the Handbook adds five new chapters to the science of rare earths. Two of the chapters deal with intermetallic compounds. An overview of ternary systems containing rare earths, transition metals and indium - Chapter 218 - opens the volume. It is followed by Chapter 219 sorting out relationships between superconductivity and magnetism. The next two chapters are dedicated to complex compounds of rare earths: Chapter 220 describes structural studies using circularly polarized luminescence spectroscopy of lanthanide systems, while Chapter 221 examines rare-earth metal-organic frameworks, also known as coordination polymers. The final Chapter 222 deals with the catalytic activity of rare earths in site-selective hydrolysis of DNA and RNA.
front cover 1
Preface 7
Contents 13
Contents of Volumes 1–33 15
Index of Contents of Volumes 1–34 25
218. Rare earth-transition metal-indides 31
Symbols and abbreviations 32
Introduction 218 33
Synthesis conditions 34
Ternary systems - compounds and phase relations 37
R-3d-metal-In systems 37
The R-Mn-In systems 37
The R-Fe-In systems 37
The R-Co-In systems 37
The R-Ni-In systems 38
The R-Cu-In systems 44
The R-Zn-In systems 56
R-4d-metal-In systems 57
The R-Ru-In systems 57
The R-Rh-In systems 57
The R-Pd-In systems 58
The R-Ag-In systems 59
The R-Cd-In systems 63
R-5d-metal-In systems 63
The R-Ir-In systems 64
The R-Pt-In systems 64
The R-Au-In systems 66
Structure types of ternary indides of rare-earth and transition metals 69
Structure type NaZn13 69
Structure type LaNi7In6 69
Structure type ThMn12 70
Structure type EuAg4In8 70
Structure type Dy2Pt7In16 71
Structure type YNi9In2 72
Structure type CaCo2Al8 73
Structure type Yb2Pd6In13 74
Structure type LaNi3In6 75
Structure type Th2Ni17 75
Structure type Ho4Ni10-Ga21 75
Structure type CeNi5Sn 77
Structure type Sm2Co9In3 78
Structure type CeCu4.32In1.68 78
Structure type YbAg2In4 79
Structure type HoCoGa5 79
Structure type Tb6Pt12In23 79
Structure type Gd3Pt4In12 81
Structure type Lu6Co17.92In14 82
Structure type MgCu4Sn 82
Structure type HoNi2.6Ga2.4 83
Structure type YNiAl4 84
Structure type LaCoAl4 84
Structure type Ho2CoGa8 85
Structure type CePt2In2 86
Structure type Ce2Au3In5 87
Structure type LaRuSn3 88
Structure type Ce4Ni7In8 88
Structure type La3Au4In7 89
Structure type anti-Hf2Co4P3 89
Structure type Pr5Ni6In11 91
Structure type Ce8Pd24Sb 91
Structure type PrCo2Ga 91
Structure type GdPt2Sn 92
Structure type MnCu2Al 93
Structure type MgCuAl2 93
Structure type PrNiIn2 94
Structure type HfNiGa2 94
Structure type Ho10Ni9In20 95
Structure type La6Co11Ga3 96
Structure types Fe2P 96
Structure type TiNiSi 98
Structure type CeCu2 99
The structure type CaIn2 99
Structure type Lu3Co1.87In4 99
Structure type AlB2 100
Structure type Mn2AlB2 101
Structure type W2CoB2 101
Structure type U2Pt2Sn 101
Structure type Mo2FeB2 102
Structure type Lu5Ni2In4 102
The structure type CsCl 103
Structure type LT-LaAgxIn1-x 104
Structure type Mo5B2Si 104
Structure type Ce12Pt7In 105
Structure type Sm12Ni6In 106
Structure type Ho6Co2Ga 106
Structure type Lu14Co2In3 106
Geometrical relations of some RxTyInz structures 108
Structures of multiple substitution 112
Structures of intergrowth of small slabs 113
Chemical bonding in rare earth transition metal indides 124
Chemical and physical properties 130
Ternary equiatomic indides RTIn 131
Magnetic and electronic properties 131
Hydrogenation behavior 136
Indides R2T2In with ordered U3Si2 or Zr3Al2 type structures 137
Indium-rich indides with HoCoGa5 or Ho2CoGa8 structures 140
Cubic indides with MgCu4Sn structure 144
Ternary indides with CsCl superstructures or Heusler phases 148
Other indides 151
Acknowledgements 218 154
References 218 154
219. Unconventional Superconductivity and Magnetism in Lanthanide and Actinide Intermetallic Compounds 165
List of symbols 219 167
List of acronyms 219 168
Introduction 219 168
Theory and techniques 172
Heavy quasiparticles in Ce, U compounds and their interactions 172
Kondo lattice model for Ce-compounds 173
Dual model for U-compounds 175
Fermi-liquid state and heavy quasiparticles: renormalized band theory 180
Quasiparticle interactions and spin fluctuation theory 182
Order parameters and their coexistence in strongly correlated electron systems 187
Order parameter classification 188
Pairing model for coexistence of SC and CDW/SDW 193
Coupled gap equations and results for coexistence 195
Methods to investigate the symmetry of order parameters 198
Detection of superconducting order parameter symmetry 199
Specific heat 200
Thermal conductivity 201
Ultrasonic attenuation 202
NMR relaxation and Knight shift 203
Upper critical field 204
Specific heat and magnetotransport in the vortex phase: a genuine angular resolved method 205
Detection of density wave type order parameters 208
Conventional density waves 209
Unconventional density waves 209
Neutron diffraction 210
Giant diamagnetism 211
Finite frequency probes 212
Ce-based heavy-fermion superconductors 213
CeM2X2 214
Electronic properties, Fermi surfaces and heavy quasiparticles 214
Superconductivity and itinerant antiferromagnetism in CeCu2Si2 219
Pressure-induced superconductivity in CePd2Si2 and CeNi2Ge2 220
CeMIn5 221
Electronic properties and Fermi surfaces 223
Unconventional superconductivity in CeCoIn5 224
Superconductivity close to a quantum critical point 226
U-based heavy-fermion superconductors 228
Multicomponent heavy fermion superconductor UPt3 229
Dual model and heavy quasiparticles 230
Pairing and the spin-orbit coupling problem 233
Multicomponent superconducting order parameter 234
Small moment AF order 235
The superconducting state, coupled with AF order 236
The critical field curves and Ginzburg-Landau theory 240
The superconducting gap function 241
Low temperature transport properties 243
NMR Knight shift results 244
Magnetothermal properties in the vortex phase 245
Magnetic exciton mediated superconductivity in UPd2Al3 246
AF structure and superconducting properties 247
Electronic structure, Fermi surface and effective mass 249
The dual model for UPd2Al3 and induced moment AF 251
Induced moments and magnetic exciton dispersion in UPd2Al3 252
Magnetic exciton anomalies in quasiparticle tunneling spectra 255
Possible symmetries of the superconducting order parameter 257
UNi2Al3: a possible triplet superconductor 258
Ferromagnetism and superconductivity in UGe2 259
Electronic structure and band magnetism 261
Coexistence of FM order and superconductivity under pressure 263
Theoretical scenarios for superconductivity in UGe2 264
Symmetry properties of gap states and Ginzburg-Landau theory 265
Microscopic approaches 266
A case of `hidden order' in URu2Si2 266
Electronic structure and 5f-states 267
Phase transitions, field and pressure dependence 268
Theoretical models: localised vs. itinerant 270
AFQ order of local induced quadrupole moments 270
Hidden order as unconventional density wave 271
High field phase diagram and metamagnetism 272
Collective excitations in the ordered phase 273
The superconducting state 273
Superconductivity in the non-Fermi liquid state of UBe13 and U1-xThxBe13 274
Normal state and nFl properties of UBe13 274
The 5f-ground state of U 275
The superconducting state in UBe13 275
Superconducting phase diagram of Th-doped crystals 276
Rare earth borocarbide superconductors 278
Physical properties of the nonmagnetic borocarbides 280
Evidence for electron-phonon superconductivity 281
Anomalous Hc2-behaviour 282
Specific heat and thermal conductivity results 282
Theoretical analysis of nonmagnetic borocarbides 283
Electronic structure of the borocarbides 283
Nodal structure of the superconducting gap and impurity effects 284
Thermodynamics and transport in the vortex phase 286
Magnetic borocarbides 288
Metamagnetism and IC-C lock-in transition in HoNi2B2C 289
Weak ferromagnetism in ErNi2B2C 292
Coexistence of superconductivity and magnetic order 292
Coexistence of helical SDW, antiferromagnetism and superconductivity in HoNi2B2C 293
Coexistence of superconductivity and weak ferromagnetism in ErNi2B2C 297
Rare earth skutterudite superconductors 298
Electronic structure and HF behaviour of PrOs4Sb12 299
Pr CEF states and antiferroquadrupolar order 299
The superconducting split transition 301
Thermal conductivity in the vortex phase and multiphase superconductivity in PrOs4Sb12 302
Gap models for SC A- and B-phases of PrOs4Sb12 304
Summary and outlook 219 306
Acknowledgements 219 307
References 219 307
220. Circularly Polarized Luminescence Spectroscopy from Lanthanide Systems 319
List of symbols 220 320
Introduction 220 321
Theoretical aspects 322
General theory 220 322
Circularly polarized luminescence from rigid samples: theory 323
Circularly Polarized Luminescence from solutions: theory 326
CPL intensity calculations, selection rules, and spectra-structure correlations 328
Circularly polarized luminescence from racemic mixtures: theory 330
Theoretical aspects of time-resolved circularly polarized luminescence 331
Time-resolved CPL from racemic mixtures: chemical racemization 331
Time-resolved CPL from racemic mixtures: excited state energy transfer 332
Time-resolved CPL from racemic mixtures: differential excited state quenching 332
Circularly polarized luminescence from perturbed racemic equilibria 334
Experimental measurement 335
CPL instrumentation 335
Steady-state CPL instrumentation 335
Time-resolved CPL instrumentation 337
Experimental and statistical limitations of CPL measurements 338
Artifacts in CPL measurements 340
CPL calibration and standards 340
Survey of recent experimental results (CPL) 341
Lanthanide complexes with achiral ligands 341
CPL from racemic mixtures following circularly polarized excitation 342
Steady-state measurements 342
Racemization kinetics from CPL measurements 351
CPL measurements in rigid sol-gels 352
CPL from racemic mixtures: differential excited-state quenching 353
CPL from racemic mixtures: perturbation of the equilibrium 360
Perturbation of the racemic equilibrium as a structural probe 362
Lanthanide complexes with chiral ligands 363
Chiral DOTA-based ligands 365
Chiral complexes with three-fold symmetry 371
Chiral complexes of low or no symmetry 373
Mixed ligand systems. 376
Other chiral mixtures. 378
CPL from Lanthanide (III) ions in biological systems 379
Magnetic Circularly Polarized Luminescence 380
Theoretical aspects 381
MCPL experimental results from luminescent lanthanide systems 381
Summary 220 383
Acknowledgements 220 383
References 220 384
221. Lanthanide-containing coordination polymers 389
List of acronyms 221 389
Introduction 221 390
Coordination polymers containing transition metal ions 392
Lanthanide-containing coordination polymers 395
Coordination polymers based on the (btc)3- ligand 398
Coordination polymers based on the (bdc)2- ligand 405
Coordination polymers based on the (bttc)4- ligand 410
Coordination polymers based on the (bhc)6- ligand 412
Coordination polymers based on benzene polycarboxylate derivatives 416
Coordination polymers based on other ligands 419
Coordination polymers with carboxylate ligands 419
Coordination polymers with sulfoxyde ligands 425
Synthetic routes 426
Coordination polymers containing poly-hydroxo-lanthanide complexes 427
Conclusion and outlooks 221 431
References 221 432
222. Cutting DNA and RNA 435
Introduction 222 436
Roles of DNA and RNA in living organisms 436
Importance of non-enzymatic scission of DNA and RNA 436
Lanthanide ions for molecular biology and biotechnology 438
Discovery of DNA hydrolysis by Ce(IV) 439
The finding of DNA hydrolysis by lanthanide(III) trichloride 439
Remarkable catalysis by Ce(IV) 440
Evidence for the hydrolytic scission of DNA 441
Cooperation of Ce(IV) and Pr(III) for faster DNA hydrolysis 444
Cleavage of plasmid DNA 444
Homogeneous Ce(IV) complexes for DNA hydrolysis 444
Ce(IV)/saccharide complexes 445
Ce(IV)/EDTA complex and its equivalents 445
Mechanistic analysis of DNA hydrolysis by Ce(IV) 446
Kinetic analysis 446
Spectroscopic studies 449
Quantum-chemical studies on the catalytically active [CeIV2(OH)4]4+ cluster and its complex with phosphodiester 453
Proposed mechanism for the DNA hydrolysis by Ce(IV) 454
RNA hydrolysis by lanthanide ions and their complexes 456
Catalysis by lanthanide(III) ions 456
Lanthanide complexes for RNA hydrolysis 457
Kinetic analysis on the RNA hydrolysis 458
Mechanism of RNA hydrolysis by lanthanide ions 460
DNA hydrolysis vs. RNA hydrolysis 461
Strategy for site-selective scission of DNA and RNA 461
Covalent strategy for site-selective scission of DNA 463
Non-covalent strategy for site-selective DNA scission 464
Gap strategy for site-selective DNA scission 464
Bulge structures for site-selective DNA scission 466
Catalytic effect of a Ce(IV) hydroxide gel on the hydrolysis of gap and bulge sites 468
Covalent conjugates of oligoamine and acridine for the promotion of gap-selective DNA hydrolysis by Ce(IV)/EDTA complex 468
Hybridization of covalent and non-covalent strategies for improved site-selective DNA scission 470
Covalent strategy for site-selective RNA hydrolysis 472
Non-covalent strategy for site-selective RNA scission 474
Novel RNA cutters 474
Two-site RNA cutters for SNPs genotyping 478
Conclusions 222 481
Acknowledgements 222 482
References 222 482
Author index 485
index 523
3.2.4 The R–Ag–In systems
Only the quasi-binary sections between the isostructural compounds RAg and RIn with CsCl type structure have been investigated. According to Ihrig et al. (1973), a continuous solid solution between the isostructural compounds LaAg and LaIn (CsCl type) occurs in the system La–Ag–In. Within the solid solution, a cubic-to-tetragonal distortion at low temperatures is observed. The transition temperature is a function of the composition and is the highest at 180 K for LaAg0.5In0.5. The structural deformation has been confirmed by Maetz et al. (1980). According to Ihrig and Methfessel (1976) the solid solution between CeAg and CeIn also shows a tetragonal distortion at low temperatures (T40 K). The structures and physical properties of the alloys within the solid solutions between RAg and RIn were studied by various authors (Sekizawa and Yasukōchi, 1964; Buschow et al., 1972). Data for R=Gd (Yagasaki et al., 1978b, 1980), R=Tb and Dy (Lal and Methfessel, 1981), and for R=Ho, Er, and Tm, show that above 8 K they have the cubic CsCl structure. According to Lal (1982), a tetragonal deformation occurs below 8 K for GdAg0.5In0.5. The crystallographic data of the other known compounds are given in table 7.
Table 7
Crystallographic data of ternary R–Ag–In...
Erscheint lt. Verlag | 27.11.2005 |
---|---|
Sprache | englisch |
Themenwelt | Schulbuch / Wörterbuch |
Naturwissenschaften ► Chemie ► Anorganische Chemie | |
Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
Technik | |
ISBN-10 | 0-08-045714-2 / 0080457142 |
ISBN-13 | 978-0-08-045714-7 / 9780080457147 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich