Number Story (eBook)
XI, 323 Seiten
Springer London (Verlag)
978-1-84800-001-8 (ISBN)
Peter Higgins distills centuries of work into one delightful narrative that celebrates the mystery of numbers and explains how different kinds of numbers arose and why they are useful. Full of historical snippets and interesting examples, the book ranges from simple number puzzles and magic tricks, to showing how ideas about numbers relate to real-world problems. This fascinating book will inspire and entertain readers across a range of abilities. Easy material is blended with more challenging ideas. As our understanding of numbers continues to evolve, this book invites us to rediscover the mystery and beauty of numbers.
Peter Higgins is a Professor of Mathematics at Essex University and inventor of Circular Sudoku. His previous books on mathematics include Mathematics for the Curious, Mathematics for the Imagination, and Nets, Puzzles and Postmen: An Exploration of Mathematical Connections.
Numbers have fascinated people for centuries. They are familiar to everyone, forming a central pillar of our understanding of the world, yet the number system was not presented to us "e;gift-wrapped"e; but, rather, was developed over millennia. Today, despite all this development, it remains true that a child may ask a question about numbers that no one can answer. Many unsolved problems surrounding number matters appear as quirky oddities of little account while others are holding up fundamental progress in mainstream mathematics.Peter Higgins distills centuries of work into one delightful narrative that celebrates the mystery of numbers and explains how different kinds of numbers arose and why they are useful. Full of historical snippets and interesting examples, the book ranges from simple number puzzles and magic tricks, to showing how ideas about numbers relate to real-world problems, such as: How are our bank account details kept secure when shopping over the internet? What are the chances of winning at Russian roulette; or of being dealt a flush in a poker hand?This fascinating book will inspire and entertain readers across a range of abilities. Easy material is blended with more challenging ideas about infinity and complex numbers, and a final chapter "e;For Connoisseurs"e; works through some of the particular claims and examples in the book in mathematical language for those who appreciate a complete explanation.As our understanding of numbers continues to evolve, this book invites us to rediscover the mystery and beauty of numbers and reminds us that the story of numbers is a tale with a long way to run...
Peter Higgins is a Professor of Mathematics at Essex University and inventor of Circular Sudoku. His previous books on mathematics include Mathematics for the Curious, Mathematics for the Imagination, and Nets, Puzzles and Postmen: An Exploration of Mathematical Connections.
Preface 9
The First Numbers 12
How Should We Think About Numbers? 16
The Structure of Numbers 19
Discovering Numbers 28
Counting and Its Consequences 34
Some Number Tricks 42
What Was the Domino? 45
Casting Out Nines 46
Divisibility Tests 50
Magical Arrays 60
Other Magic Number Arrays 68
Some Tricky Numbers 72
Catalan Numbers 76
Fibonacci Numbers 78
Stirling and Bell Numbers 83
Hailstone Numbers 86
The Primes 88
Lucky Numbers 95
Some Useful Numbers 96
Percentages, Ratios, and Odds 96
Scientific Notation 99
Meaning of Means 101
On the Trail of New Numbers 112
Pluses and Minuses 115
Fractions and Rationals 116
Glimpses of Infinity 128
The Hilbert Hotel 131
Cantor’s Comparisons 133
Structure of the Number Line 139
Infinity Plus One 144
Applications of Number: Chance 148
Some Examples 152
Some Collectable Problems on Chance 159
The Complex History of the Imaginary 176
Algebra and its History 179
Solution of the Cubic 185
From Imaginary to Complex 196
The Imaginary World Is Entered 200
The Polar System 206
Gaussian Integers 209
Glimpses of Further Consequences 211
The Number Line under the Microscope 220
Return to Egypt 223
Coin Problems, Sums, and Differences 227
Fibonacci and Fractions 232
Cantor’s Middle Third Set 236
Application of Number: Codes and Public Key Cryptography 240
Examples from History 241
Unbreakable Codes 249
New Codes for a New World of Coding 253
Simultaneous Key Creation 255
Opening the Trapdoor: Public Key Encryption 262
Alice and Bob Vanquish Eve with Modular Arithmetic 266
For Connoisseurs 274
Chapter 1 274
Chapter 3 279
Chapter 4 282
Chapter 5 292
Chapter 6 294
Chapter 7 300
Chapter 8 307
Chapter 9 311
Chapter 10 314
Chapter 11 320
Chapter 12 323
Further Reading 326
Index 330
Erscheint lt. Verlag | 1.1.2008 |
---|---|
Zusatzinfo | XI, 323 p. |
Verlagsort | London |
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber ► Natur / Technik ► Naturwissenschaft |
Schulbuch / Wörterbuch ► Lexikon / Chroniken | |
Geisteswissenschaften ► Geschichte | |
Mathematik / Informatik ► Mathematik | |
Technik | |
Schlagworte | Counting • cryptography • Magic • Mathematics • Number Theory |
ISBN-10 | 1-84800-001-4 / 1848000014 |
ISBN-13 | 978-1-84800-001-8 / 9781848000018 |
Haben Sie eine Frage zum Produkt? |
Größe: 1,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich