Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Principles of Data Science (eBook)

A beginner's guide to essential math and coding skills for data fluency and machine learning
eBook Download: EPUB
2024 | 1. Auflage
326 Seiten
Packt Publishing (Verlag)
978-1-83763-600-6 (ISBN)

Lese- und Medienproben

Principles of Data Science -  Sinan Ozdemir
Systemvoraussetzungen
28,79 inkl. MwSt
(CHF 28,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Principles of Data Science bridges mathematics, programming, and business analysis, empowering you to confidently pose and address complex data questions and construct effective machine learning pipelines. This book will equip you with the tools to transform abstract concepts and raw statistics into actionable insights.
Starting with cleaning and preparation, you'll explore effective data mining strategies and techniques before moving on to building a holistic picture of how every piece of the data science puzzle fits together. Throughout the book, you'll discover statistical models with which you can control and navigate even the densest or the sparsest of datasets and learn how to create powerful visualizations that communicate the stories hidden in your data.
With a focus on application, this edition covers advanced transfer learning and pre-trained models for NLP and vision tasks. You'll get to grips with advanced techniques for mitigating algorithmic bias in data as well as models and addressing model and data drift. Finally, you'll explore medium-level data governance, including data provenance, privacy, and deletion request handling.
By the end of this data science book, you'll have learned the fundamentals of computational mathematics and statistics, all while navigating the intricacies of modern ML and large pre-trained models like GPT and BERT.


Transform your data into insights with must-know techniques and mathematical concepts to unravel the secrets hidden within your dataKey FeaturesLearn practical data science combined with data theory to gain maximum insights from dataDiscover methods for deploying actionable machine learning pipelines while mitigating biases in data and modelsExplore actionable case studies to put your new skills to use immediatelyPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionPrinciples of Data Science bridges mathematics, programming, and business analysis, empowering you to confidently pose and address complex data questions and construct effective machine learning pipelines. This book will equip you with the tools to transform abstract concepts and raw statistics into actionable insights. Starting with cleaning and preparation, you ll explore effective data mining strategies and techniques before moving on to building a holistic picture of how every piece of the data science puzzle fits together. Throughout the book, you ll discover statistical models with which you can control and navigate even the densest or the sparsest of datasets and learn how to create powerful visualizations that communicate the stories hidden in your data. With a focus on application, this edition covers advanced transfer learning and pre-trained models for NLP and vision tasks. You ll get to grips with advanced techniques for mitigating algorithmic bias in data as well as models and addressing model and data drift. Finally, you ll explore medium-level data governance, including data provenance, privacy, and deletion request handling. By the end of this data science book, you'll have learned the fundamentals of computational mathematics and statistics, all while navigating the intricacies of modern ML and large pre-trained models like GPT and BERT.What you will learnMaster the fundamentals steps of data science through practical examplesBridge the gap between math and programming using advanced statistics and MLHarness probability, calculus, and models for effective data controlExplore transformative modern ML with large language modelsEvaluate ML success with impactful metrics and MLOpsCreate compelling visuals that convey actionable insightsQuantify and mitigate biases in data and ML modelsWho this book is forIf you are an aspiring novice data scientist eager to expand your knowledge, this book is for you. Whether you have basic math skills and want to apply them in the field of data science, or you excel in programming but lack the necessary mathematical foundations, you ll find this book useful. Familiarity with Python programming will further enhance your learning experience.]]>
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly (Verlag)
CHF 48,75