Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Hands-On Time Series Analysis with R (eBook)

Perform time series analysis and forecasting using R

(Autor)

eBook Download: EPUB
2019
448 Seiten
Packt Publishing (Verlag)
978-1-78862-404-6 (ISBN)

Lese- und Medienproben

Hands-On Time Series Analysis with R - Rami Krispin
31,32 € (CHF 29,95)
Systemvoraussetzungen
32,36 € (CHF 31,60)
Systemvoraussetzungen
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Build efficient forecasting models using traditional time series models and machine learning algorithms.




Key Features



  • Perform time series analysis and forecasting using R packages such as Forecast and h2o


  • Develop models and find patterns to create visualizations using the TSstudio and plotly packages


  • Master statistics and implement time-series methods using examples mentioned



Book Description



Time series analysis is the art of extracting meaningful insights from, and revealing patterns in, time series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series.






This book explores the basics of time series analysis with R and lays the foundations you need to build forecasting models. You will learn how to preprocess raw time series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data and extract meaningful information from it using both descriptive statistics and rich data visualization tools in R such as the TSstudio, plotly, and ggplot2 packages. The later section of the book delves into traditional forecasting models such as time series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also cover advanced time series regression models with machine learning algorithms such as Random Forest and Gradient Boosting Machine using the h2o package.






By the end of this book, you will have the skills needed to explore your data, identify patterns, and build a forecasting model using various traditional and machine learning methods.




What you will learn



  • Visualize time series data and derive better insights


  • Explore auto-correlation and master statistical techniques


  • Use time series analysis tools from the stats, TSstudio, and forecast packages


  • Explore and identify seasonal and correlation patterns


  • Work with different time series formats in R


  • Explore time series models such as ARIMA, Holt-Winters, and more


  • Evaluate high-performance forecasting solutions



Who this book is for



Hands-On Time Series Analysis with R is ideal for data analysts, data scientists, and all R developers who are looking to perform time series analysis to predict outcomes effectively. A basic knowledge of statistics is required; some knowledge in R is expected, but not mandatory.


Build efficient forecasting models using traditional time series models and machine learning algorithms.Key FeaturesPerform time series analysis and forecasting using R packages such as Forecast and h2oDevelop models and find patterns to create visualizations using the TSstudio and plotly packagesMaster statistics and implement time-series methods using examples mentionedBook DescriptionTime series analysis is the art of extracting meaningful insights from, and revealing patterns in, time series data using statistical and data visualization approaches. These insights and patterns can then be utilized to explore past events and forecast future values in the series.This book explores the basics of time series analysis with R and lays the foundations you need to build forecasting models. You will learn how to preprocess raw time series data and clean and manipulate data with packages such as stats, lubridate, xts, and zoo. You will analyze data and extract meaningful information from it using both descriptive statistics and rich data visualization tools in R such as the TSstudio, plotly, and ggplot2 packages. The later section of the book delves into traditional forecasting models such as time series linear regression, exponential smoothing (Holt, Holt-Winter, and more) and Auto-Regressive Integrated Moving Average (ARIMA) models with the stats and forecast packages. You'll also cover advanced time series regression models with machine learning algorithms such as Random Forest and Gradient Boosting Machine using the h2o package.By the end of this book, you will have the skills needed to explore your data, identify patterns, and build a forecasting model using various traditional and machine learning methods.What you will learnVisualize time series data and derive better insightsExplore auto-correlation and master statistical techniquesUse time series analysis tools from the stats, TSstudio, and forecast packagesExplore and identify seasonal and correlation patternsWork with different time series formats in RExplore time series models such as ARIMA, Holt-Winters, and moreEvaluate high-performance forecasting solutionsWho this book is forHands-On Time Series Analysis with R is ideal for data analysts, data scientists, and all R developers who are looking to perform time series analysis to predict outcomes effectively. A basic knowledge of statistics is required; some knowledge in R is expected, but not mandatory.
Erscheint lt. Verlag 31.5.2019
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
Mathematik / Informatik Informatik Theorie / Studium
Schlagworte ARIMA • ARMA • Data processing • Data Visualization • R • Time Series Analysis • Time Series Forecasting
ISBN-10 1-78862-404-1 / 1788624041
ISBN-13 978-1-78862-404-6 / 9781788624046
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 31,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. Anderson

eBook Download (2023)
Sage Publications (Verlag)
CHF 97,65
Interpreter of Constitutionalism in Japan

von Frank O. Miller

eBook Download (2023)
University of California Press (Verlag)
CHF 48,80