Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Beginning Data Analysis with Python And Jupyter (eBook)

Use powerful industry-standard tools to unlock new, actionable insight from your existing data

(Autor)

eBook Download: EPUB
2018
194 Seiten
Packt Publishing (Verlag)
978-1-78953-465-8 (ISBN)

Lese- und Medienproben

Beginning Data Analysis with Python And Jupyter - Alex Galea
Systemvoraussetzungen
11,99 inkl. MwSt
(CHF 11,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Use powerful industry-standard tools to unlock new, actionable insight from your existing data

Key Features

  • Get up and running with the Jupyter ecosystem and some example datasets
  • Learn about key machine learning concepts like SVM, KNN classifiers and Random Forests
  • Discover how you can use web scraping to gather and parse your own bespoke datasets

Book Description

Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction.

Get to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world.

We'll start with understanding the basics of Jupyter and its standard features. You'll be analyzing an example of a data analytics report. After analyzing a data analytics report, next step is to implement multiple classification algorithms. We'll then show you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context. Finish up by learning to visualize these data interactively.

What you will learn

  • Identify potential areas of investigation and perform exploratory data analysis
  • Plan a machine learning classification strategy and train classification models
  • Use validation curves and dimensionality reduction to tune and enhance your models
  • Scrape tabular data from web pages and transform it into Pandas DataFrames
  • Create interactive, web-friendly visualizations to clearly communicate your findings

Who this book is for

This course is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.

Alex Galea has been professionally practicing data analytics since graduating with a Master's degree in Physics from the University of Guelph, Canada. He developed a keen interest in Python while researching quantum gases as part of his graduate studies. Alex is currently doing web data analytics, where Python continues to play a key role in his work. He is a frequent blogger about data-centric projects that involve Python and Jupyter Notebooks.
Getting started with data science doesn't have to be an uphill battle. This step-by-step guide is ideal for beginners who know a little Python and are looking for a quick, fast-paced introduction.About This BookGet up and running with the Jupyter ecosystem and some example datasetsLearn about key machine learning concepts like SVM, KNN classifiers and Random ForestsDiscover how you can use web scraping to gather and parse your own bespoke datasetsWho This Book Is ForThis book is ideal for professionals with a variety of job descriptions across large range of industries, given the rising popularity and accessibility of data science. You'll need some prior experience with Python, with any prior work with libraries like Pandas, Matplotlib and Pandas providing you a useful head start.What You Will LearnIdentify potential areas of investigation and perform exploratory data analysisPlan a machine learning classification strategy and train classification modelsUse validation curves and dimensionality reduction to tune and enhance your modelsScrape tabular data from web pages and transform it into Pandas DataFramesCreate interactive, web-friendly visualizations to clearly communicate your findingsIn DetailGet to grips with the skills you need for entry-level data science in this hands-on Python and Jupyter course. You'll learn about some of the most commonly used libraries that are part of the Anaconda distribution, and then explore machine learning models with real datasets to give you the skills and exposure you need for the real world. We'll finish up by showing you how easy it can be to scrape and gather your own data from the open web, so that you can apply your new skills in an actionable context.Style and approachThis book covers every aspect of the standard data-workflow process within a day, along with theory, practical hands-on coding, and relatable illustrations.
Erscheint lt. Verlag 5.6.2018
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
Mathematik / Informatik Informatik Theorie / Studium
Schlagworte Data Analysis • Data Science • Jupyter • Python
ISBN-10 1-78953-465-8 / 1789534658
ISBN-13 978-1-78953-465-8 / 9781789534658
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 13,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. L. Anderson; Inc. SAGE Publications

eBook Download (2023)
Sage Publications (Verlag)
CHF 102,55
Interpreter of Constitutionalism in Japan

von Frank O. Miller

eBook Download (2023)
University of California Press (Verlag)
CHF 48,80