Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Feature Engineering Made Easy (eBook)

Identify unique features from your dataset in order to build powerful machine learning systems
eBook Download: EPUB
2018
316 Seiten
Packt Publishing (Verlag)
978-1-78728-647-4 (ISBN)

Lese- und Medienproben

Feature Engineering Made Easy - Sinan Ozdemir, Divya Susarla
Systemvoraussetzungen
32,39 inkl. MwSt
(CHF 31,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

A perfect guide to speed up the predicting power of machine learning algorithms

Key Features

  • Design, discover, and create dynamic, efficient features for your machine learning application
  • Understand your data in-depth and derive astonishing data insights with the help of this Guide
  • Grasp powerful feature-engineering techniques and build machine learning systems

Book Description

Feature engineering is the most important step in creating powerful machine learning systems. This book will take you through the entire feature-engineering journey to make your machine learning much more systematic and effective.

You will start with understanding your data-often the success of your ML models depends on how you leverage different feature types, such as continuous, categorical, and more, You will learn when to include a feature, when to omit it, and why, all by understanding error analysis and the acceptability of your models. You will learn to convert a problem statement into useful new features. You will learn to deliver features driven by business needs as well as mathematical insights. You'll also learn how to use machine learning on your machines, automatically learning amazing features for your data.

By the end of the book, you will become proficient in Feature Selection, Feature Learning, and Feature Optimization.

What you will learn

  • Identify and leverage different feature types
  • Clean features in data to improve predictive power
  • Understand why and how to perform feature selection, and model error analysis
  • Leverage domain knowledge to construct new features
  • Deliver features based on mathematical insights
  • Use machine-learning algorithms to construct features
  • Master feature engineering and optimization
  • Harness feature engineering for real world applications through a structured case study

Who this book is for

If you are a data science professional or a machine learning engineer looking to strengthen your predictive analytics model, then this book is a perfect guide for you. Some basic understanding of the machine learning concepts and Python scripting would be enough to get started with this book.

Sinan Ozdemir is a data scientist, startup founder, and educator living in the San Francisco Bay Area with his dog, Charlie; cat, Euclid; and bearded dragon, Fiero. He spent his academic career studying pure mathematics at Johns Hopkins University before transitioning to education. He spent several years conducting lectures on data science at Johns Hopkins University and at the General Assembly before founding his own startup, Legion Analytics, which uses artificial intelligence and data science to power enterprise sales teams. After completing a Fellowship at the Y Combinator accelerator, Sinan spent most of his time working on his fast-growing company, while creating educational material for data science. Divya Susarla is an experienced leader in data methods, implementing and applying tactics across a range of industries and fields including investment management, social enterprise consulting, and wine marketing. She trained in data by way of specializing in Economics and Political Science at University of California, Irvine, cultivating a passion for teaching by developing an analytically based, international affairs curriculum for students through the Global Connect program. Divya is currently focused on natural language processing and generation techniques at Kylie.ai, a startup helping clients automate their customer support conversations. When she is not busy working on building Kylie.ai and writing educational content, she spends her time traveling across the globe and experimenting with new recipes at her home in Berkeley, CA.
A perfect guide to speed up the predicting power of machine learning algorithmsAbout This BookDesign, discover, and create dynamic, efficient features for your machine learning applicationUnderstand your data in-depth and derive astonishing data insights with the help of this GuideGrasp powerful feature-engineering techniques and build machine learning systemsWho This Book Is ForIf you are a data science professional or a machine learning engineer looking to strengthen your predictive analytics model, then this book is a perfect guide for you. Some basic understanding of the machine learning concepts and Python scripting would be enough to get started with this book.What You Will LearnIdentify and leverage different feature typesClean features in data to improve predictive powerUnderstand why and how to perform feature selection, and model error analysisLeverage domain knowledge to construct new featuresDeliver features based on mathematical insightsUse machine-learning algorithms to construct featuresMaster feature engineering and optimizationHarness feature engineering for real world applications through a structured case studyIn DetailFeature engineering is the most important step in creating powerful machine learning systems. This book will take you through the entire feature-engineering journey to make your machine learning much more systematic and effective.You will start with understanding your data-often the success of your ML models depends on how you leverage different feature types, such as continuous, categorical, and more, You will learn when to include a feature, when to omit it, and why, all by understanding error analysis and the acceptability of your models. You will learn to convert a problem statement into useful new features. You will learn to deliver features driven by business needs as well as mathematical insights. You'll also learn how to use machine learning on your machines, automatically learning amazing features for your data.By the end of the book, you will become proficient in Feature Selection, Feature Learning, and Feature Optimization.Style and approachThis step-by-step guide with use cases, examples, and illustrations will help you master the concepts of feature engineering. Along with explaining the fundamentals, the book will also introduce you to slightly advanced concepts later on and will help you implement these techniques in the real world.
Erscheint lt. Verlag 22.1.2018
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
Mathematik / Informatik Informatik Theorie / Studium
Schlagworte Feature learning • Feature Selection • machine learning algorithms • ML Models
ISBN-10 1-78728-647-9 / 1787286479
ISBN-13 978-1-78728-647-4 / 9781787286474
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 5,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. Anderson

eBook Download (2023)
Sage Publications (Verlag)
CHF 97,65
Interpreter of Constitutionalism in Japan

von Frank O. Miller

eBook Download (2023)
University of California Press (Verlag)
CHF 48,80