Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Practical Time Series Analysis (eBook)

eBook Download: EPUB
2017
244 Seiten
Packt Publishing (Verlag)
978-1-78829-419-5 (ISBN)

Lese- und Medienproben

Practical Time Series Analysis - Dr. Avishek Pal, Dr. PKS Prakash
Systemvoraussetzungen
41,99 inkl. MwSt
(CHF 40,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Step by Step guide filled with real world practical examples.

About This Book

  • Get your first experience with data analysis with one of the most powerful types of analysis-time-series.
  • Find patterns in your data and predict the future pattern based on historical data.
  • Learn the statistics, theory, and implementation of Time-series methods using this example-rich guide

Who This Book Is For

This book is for anyone who wants to analyze data over time and/or frequency. A statistical background is necessary to quickly learn the analysis methods.

What You Will Learn

  • Understand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science project
  • Develop an understanding of loading, exploring, and visualizing time-series data
  • Explore auto-correlation and gain knowledge of statistical techniques to deal with non-stationarity time series
  • Take advantage of exponential smoothing to tackle noise in time series data
  • Learn how to use auto-regressive models to make predictions using time-series data
  • Build predictive models on time series using techniques based on auto-regressive moving averages
  • Discover recent advancements in deep learning to build accurate forecasting models for time series
  • Gain familiarity with the basics of Python as a powerful yet simple to write programming language

In Detail

Time Series Analysis allows us to analyze data which is generated over a period of time and has sequential interdependencies between the observations. This book describes special mathematical tricks and techniques which are geared towards exploring the internal structures of time series data and generating powerful descriptive and predictive insights. Also, the book is full of real-life examples of time series and their analyses using cutting-edge solutions developed in Python.

The book starts with descriptive analysis to create insightful visualizations of internal structures such as trend, seasonality and autocorrelation. Next, the statistical methods of dealing with autocorrelation and non-stationary time series are described. This is followed by exponential smoothing to produce meaningful insights from noisy time series data. At this point, we shift focus towards predictive analysis and introduce autoregressive models such as ARMA and ARIMA for time series forecasting. Later, powerful deep learning methods are presented, to develop accurate forecasting models for complex time series, and under the availability of little domain knowledge. All the topics are illustrated with real-life problem scenarios and their solutions by best-practice implementations in Python.

The book concludes with the Appendix, with a brief discussion of programming and solving data science problems using Python.

Style and approach

This book takes the readers from the basic to advance level of Time series analysis in a very practical and real world use cases.


Step by Step guide filled with real world practical examples.About This BookGet your first experience with data analysis with one of the most powerful types of analysis-time-series.Find patterns in your data and predict the future pattern based on historical data.Learn the statistics, theory, and implementation of Time-series methods using this example-rich guideWho This Book Is ForThis book is for anyone who wants to analyze data over time and/or frequency. A statistical background is necessary to quickly learn the analysis methods.What You Will LearnUnderstand the basic concepts of Time Series Analysis and appreciate its importance for the success of a data science projectDevelop an understanding of loading, exploring, and visualizing time-series dataExplore auto-correlation and gain knowledge of statistical techniques to deal with non-stationarity time seriesTake advantage of exponential smoothing to tackle noise in time series dataLearn how to use auto-regressive models to make predictions using time-series dataBuild predictive models on time series using techniques based on auto-regressive moving averagesDiscover recent advancements in deep learning to build accurate forecasting models for time seriesGain familiarity with the basics of Python as a powerful yet simple to write programming languageIn DetailTime Series Analysis allows us to analyze data which is generated over a period of time and has sequential interdependencies between the observations. This book describes special mathematical tricks and techniques which are geared towards exploring the internal structures of time series data and generating powerful descriptive and predictive insights. Also, the book is full of real-life examples of time series and their analyses using cutting-edge solutions developed in Python.The book starts with descriptive analysis to create insightful visualizations of internal structures such as trend, seasonality and autocorrelation. Next, the statistical methods of dealing with autocorrelation and non-stationary time series are described. This is followed by exponential smoothing to produce meaningful insights from noisy time series data. At this point, we shift focus towards predictive analysis and introduce autoregressive models such as ARMA and ARIMA for time series forecasting. Later, powerful deep learning methods are presented, to develop accurate forecasting models for complex time series, and under the availability of little domain knowledge. All the topics are illustrated with real-life problem scenarios and their solutions by best-practice implementations in Python.The book concludes with the Appendix, with a brief discussion of programming and solving data science problems using Python.Style and approachThis book takes the readers from the basic to advance level of Time series analysis in a very practical and real world use cases.
Erscheint lt. Verlag 28.9.2017
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
ISBN-10 1-78829-419-X / 178829419X
ISBN-13 978-1-78829-419-5 / 9781788294195
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 10,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. Anderson

eBook Download (2023)
Sage Publications (Verlag)
CHF 95,70
Exploring the Central Brooks Range, Second Edition

von Robert Marshall; George Marshall

eBook Download (2023)
University of California Press (Verlag)
CHF 37,95
A Translation and Study of the Gukansho, an Interpretative History of …

von Delmer Brown; Ichiro Ishida

eBook Download (2023)
University of California Press (Verlag)
CHF 51,75