Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Data Science Algorithms in a Week (eBook)

(Autor)

eBook Download: EPUB
2017
210 Seiten
Packt Publishing (Verlag)
978-1-78728-274-2 (ISBN)

Lese- und Medienproben

Data Science Algorithms in a Week - David Natingga
Systemvoraussetzungen
37,19 inkl. MwSt
(CHF 36,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Build strong foundation of machine learning algorithms In 7 days.

About This Book

  • Get to know seven algorithms for your data science needs in this concise, insightful guide
  • Ensure you're confident in the basics by learning when and where to use various data science algorithms
  • Learn to use machine learning algorithms in a period of just 7 days

Who This Book Is For

This book is for aspiring data science professionals who are familiar with Python and have a statistics background. It is ideal for developers who are currently implementing one or two data science algorithms and want to learn more to expand their skill set.

What You Will Learn

  • Find out how to classify using Naive Bayes, Decision Trees, and Random Forest to achieve accuracy to solve complex problems
  • Identify a data science problem correctly and devise an appropriate prediction solution using Regression and Time-series
  • See how to cluster data using the k-Means algorithm
  • Get to know how to implement the algorithms efficiently in the Python and R languages

In Detail

Machine learning applications are highly automated and self-modifying, and they continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly. Data science helps you gain new knowledge from existing data through algorithmic and statistical analysis.

This book will address the problems related to accurate and efficient data classification and prediction. Over the course of 7 days, you will be introduced to seven algorithms, along with exercises that will help you learn different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. You will then find out how to predict data based on the existing trends in your datasets.

This book covers algorithms such as: k-Nearest Neighbors, Naive Bayes, Decision Trees, Random Forest, k-Means, Regression, and Time-series. On completion of the book, you will understand which machine learning algorithm to pick for clustering, classification, or regression and which is best suited for your problem.

Style and approach

Machine learning applications are highly automated and self-modifying which continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly.


Build strong foundation of machine learning algorithms In 7 days.About This BookGet to know seven algorithms for your data science needs in this concise, insightful guideEnsure you're confident in the basics by learning when and where to use various data science algorithmsLearn to use machine learning algorithms in a period of just 7 daysWho This Book Is ForThis book is for aspiring data science professionals who are familiar with Python and have a statistics background. It is ideal for developers who are currently implementing one or two data science algorithms and want to learn more to expand their skill set.What You Will LearnFind out how to classify using Naive Bayes, Decision Trees, and Random Forest to achieve accuracy to solve complex problemsIdentify a data science problem correctly and devise an appropriate prediction solution using Regression and Time-seriesSee how to cluster data using the k-Means algorithmGet to know how to implement the algorithms efficiently in the Python and R languagesIn DetailMachine learning applications are highly automated and self-modifying, and they continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly. Data science helps you gain new knowledge from existing data through algorithmic and statistical analysis.This book will address the problems related to accurate and efficient data classification and prediction. Over the course of 7 days, you will be introduced to seven algorithms, along with exercises that will help you learn different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. You will then find out how to predict data based on the existing trends in your datasets.This book covers algorithms such as: k-Nearest Neighbors, Naive Bayes, Decision Trees, Random Forest, k-Means, Regression, and Time-series. On completion of the book, you will understand which machine learning algorithm to pick for clustering, classification, or regression and which is best suited for your problem.Style and approachMachine learning applications are highly automated and self-modifying which continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly.
Erscheint lt. Verlag 16.8.2017
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
ISBN-10 1-78728-274-0 / 1787282740
ISBN-13 978-1-78728-274-2 / 9781787282742
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 2,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. L. Anderson; Inc. SAGE Publications

eBook Download (2023)
Sage Publications (Verlag)
CHF 102,55
Interpreter of Constitutionalism in Japan

von Frank O. Miller

eBook Download (2023)
University of California Press (Verlag)
CHF 48,80