Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Bayesian Analysis with Python (eBook)

(Autor)

eBook Download: EPUB
2016
282 Seiten
Packt Publishing (Verlag)
978-1-78588-985-1 (ISBN)

Lese- und Medienproben

Bayesian Analysis with Python - Osvaldo Martin
Systemvoraussetzungen
41,99 inkl. MwSt
(CHF 40,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Unleash the power and flexibility of the Bayesian framework

About This Book

  • Simplify the Bayes process for solving complex statistical problems using Python;
  • Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises;
  • Learn how and when to use Bayesian analysis in your applications with this guide.

Who This Book Is For

Students, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed.

What You Will Learn

  • Understand the essentials Bayesian concepts from a practical point of view
  • Learn how to build probabilistic models using the Python library PyMC3
  • Acquire the skills to sanity-check your models and modify them if necessary
  • Add structure to your models and get the advantages of hierarchical models
  • Find out how different models can be used to answer different data analysis questions
  • When in doubt, learn to choose between alternative models.
  • Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression.
  • Learn how to think probabilistically and unleash the power and flexibility of the Bayesian framework

In Detail

The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.

Style and approach

Bayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.


Unleash the power and flexibility of the Bayesian frameworkAbout This BookSimplify the Bayes process for solving complex statistical problems using Python;Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises;Learn how and when to use Bayesian analysis in your applications with this guide.Who This Book Is ForStudents, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed.What You Will LearnUnderstand the essentials Bayesian concepts from a practical point of viewLearn how to build probabilistic models using the Python library PyMC3Acquire the skills to sanity-check your models and modify them if necessaryAdd structure to your models and get the advantages of hierarchical modelsFind out how different models can be used to answer different data analysis questionsWhen in doubt, learn to choose between alternative models.Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression.Learn how to think probabilistically and unleash the power and flexibility of the Bayesian frameworkIn DetailThe purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.Style and approachBayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.
Erscheint lt. Verlag 25.11.2016
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
ISBN-10 1-78588-985-0 / 1785889850
ISBN-13 978-1-78588-985-1 / 9781785889851
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 15,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. Anderson

eBook Download (2023)
Sage Publications (Verlag)
CHF 97,65
Interpreter of Constitutionalism in Japan

von Frank O. Miller

eBook Download (2023)
University of California Press (Verlag)
CHF 48,80