Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Apache Spark Machine Learning Blueprints (eBook)

(Autor)

eBook Download: EPUB
2016
252 Seiten
Packt Publishing (Verlag)
978-1-78588-778-9 (ISBN)

Lese- und Medienproben

Apache Spark Machine Learning Blueprints - Alex Liu
Systemvoraussetzungen
34,79 inkl. MwSt
(CHF 33,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Develop a range of cutting-edge machine learning projects with Apache Spark using this actionable guide

About This Book

  • Customize Apache Spark and R to fit your analytical needs in customer research, fraud detection, risk analytics, and recommendation engine development
  • Develop a set of practical Machine Learning applications that can be implemented in real-life projects
  • A comprehensive, project-based guide to improve and refine your predictive models for practical implementation

Who This Book Is For

If you are a data scientist, a data analyst, or an R and SPSS user with a good understanding of machine learning concepts, algorithms, and techniques, then this is the book for you. Some basic understanding of Spark and its core elements and application is required.

What You Will Learn

  • Set up Apache Spark for machine learning and discover its impressive processing power
  • Combine Spark and R to unlock detailed business insights essential for decision making
  • Build machine learning systems with Spark that can detect fraud and analyze financial risks
  • Build predictive models focusing on customer scoring and service ranking
  • Build a recommendation systems using SPSS on Apache Spark
  • Tackle parallel computing and find out how it can support your machine learning projects
  • Turn open data and communication data into actionable insights by making use of various forms of machine learning

In Detail

There's a reason why Apache Spark has become one of the most popular tools in Machine Learning - its ability to handle huge datasets at an impressive speed means you can be much more responsive to the data at your disposal. This book shows you Spark at its very best, demonstrating how to connect it with R and unlock maximum value not only from the tool but also from your data.

Packed with a range of project 'blueprints' that demonstrate some of the most interesting challenges that Spark can help you tackle, you'll find out how to use Spark notebooks and access, clean, and join different datasets before putting your knowledge into practice with some real-world projects, in which you will see how Spark Machine Learning can help you with everything from fraud detection to analyzing customer attrition. You'll also find out how to build a recommendation engine using Spark's parallel computing powers.

Style and approach

This book offers a step-by-step approach to setting up Apache Spark, and use other analytical tools with it to process Big Data and build machine learning projects.The initial chapters focus more on the theory aspect of machine learning with Spark, while each of the later chapters focuses on building standalone projects using Spark.


Develop a range of cutting-edge machine learning projects with Apache Spark using this actionable guideAbout This BookCustomize Apache Spark and R to fit your analytical needs in customer research, fraud detection, risk analytics, and recommendation engine developmentDevelop a set of practical Machine Learning applications that can be implemented in real-life projectsA comprehensive, project-based guide to improve and refine your predictive models for practical implementationWho This Book Is ForIf you are a data scientist, a data analyst, or an R and SPSS user with a good understanding of machine learning concepts, algorithms, and techniques, then this is the book for you. Some basic understanding of Spark and its core elements and application is required.What You Will LearnSet up Apache Spark for machine learning and discover its impressive processing powerCombine Spark and R to unlock detailed business insights essential for decision makingBuild machine learning systems with Spark that can detect fraud and analyze financial risksBuild predictive models focusing on customer scoring and service rankingBuild a recommendation systems using SPSS on Apache SparkTackle parallel computing and find out how it can support your machine learning projectsTurn open data and communication data into actionable insights by making use of various forms of machine learningIn DetailThere's a reason why Apache Spark has become one of the most popular tools in Machine Learning - its ability to handle huge datasets at an impressive speed means you can be much more responsive to the data at your disposal. This book shows you Spark at its very best, demonstrating how to connect it with R and unlock maximum value not only from the tool but also from your data.Packed with a range of project "e;blueprints"e; that demonstrate some of the most interesting challenges that Spark can help you tackle, you'll find out how to use Spark notebooks and access, clean, and join different datasets before putting your knowledge into practice with some real-world projects, in which you will see how Spark Machine Learning can help you with everything from fraud detection to analyzing customer attrition. You'll also find out how to build a recommendation engine using Spark's parallel computing powers.Style and approachThis book offers a step-by-step approach to setting up Apache Spark, and use other analytical tools with it to process Big Data and build machine learning projects.The initial chapters focus more on the theory aspect of machine learning with Spark, while each of the later chapters focuses on building standalone projects using Spark.
Erscheint lt. Verlag 30.5.2016
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
ISBN-10 1-78588-778-5 / 1785887785
ISBN-13 978-1-78588-778-9 / 9781785887789
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 7,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. Anderson

eBook Download (2023)
Sage Publications (Verlag)
CHF 97,65
Interpreter of Constitutionalism in Japan

von Frank O. Miller

eBook Download (2023)
University of California Press (Verlag)
CHF 48,80