Spectral Theory of Automorphic Functions
Springer (Verlag)
978-94-010-7344-8 (ISBN)
1. Introduction.- 2. What Does One Need Automorphic Functions for? Some Remarks or a Pragmatic Reader.- 3. Harmonic Analysis of Periodic Functions. The Hardy—Vorono? Formula.- 4. Expansion in Eigenfunctions of the Automorphic Laplacian on the Lobachevsky Plane.- 5. Harmonic Analysis of Automorphic Functions. Estimates for Fourier Coefficients of Parabolic Forms of Weight Zero.- 6. The Selberg Trace Formula for Fuchsian Groups of the First Kind.- 7. The Theory of the Selberg Zeta-Function.- 8. Problems in the Theory of the Discrete Spectrum of Automorphic Laplacians.- 9. The Spectral Moduli Problem.- 10. Automorphic Functions and the Kummer Problem.- 11. The Selberg Trace Formula on the Reductive Lie Groups.- 12. Automorphic Functions, Representations and L-functions.- 13. Remarks and Comments. Annotations to the Cited Literature.- References.- Appendix 1. Monodromy Groups and Automorphic Functions.- Appendix 2. Automorphic Functions for Effective Solutions of Certain Issues of the Riemann-Hilbert Problem.- Author Index.
Reihe/Serie | Mathematics and its Applications ; 51 | Mathematics and its Applications ; 51 |
---|---|
Zusatzinfo | XIV, 176 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Sachbuch/Ratgeber ► Natur / Technik ► Garten |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 94-010-7344-9 / 9401073449 |
ISBN-13 | 978-94-010-7344-8 / 9789401073448 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich