Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Kazhdan's Property (T) -  Bachir Bekka,  Pierre de la Harpe,  Alain Valette

Kazhdan's Property (T) (eBook)

eBook Download: PDF
2008 | 1. Auflage
Cambridge University Press (Verlag)
978-0-511-38969-6 (ISBN)
Systemvoraussetzungen
179,25 inkl. MwSt
(CHF 175,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Property (T) is a rigidity property for topological groups, first formulated by D. Kazhdan in the mid 1960's with the aim of demonstrating that a large class of lattices are finitely generated. Later developments have shown that Property (T) plays an important role in an amazingly large variety of subjects, including discrete subgroups of Lie groups, ergodic theory, random walks, operator algebras, combinatorics, and theoretical computer science. This monograph offers a comprehensive introduction to the theory. It describes the two most important points of view on Property (T): the first uses a unitary group representation approach, and the second a fixed point property for affine isometric actions. Via these the authors discuss a range of important examples and applications to several domains of mathematics. A detailed appendix provides a systematic exposition of parts of the theory of group representations that are used to formulate and develop Property (T).
Property (T) is a rigidity property for topological groups, first formulated by D. Kazhdan in the mid 1960''s with the aim of demonstrating that a large class of lattices are finitely generated. Later developments have shown that Property (T) plays an important role in an amazingly large variety of subjects, including discrete subgroups of Lie groups, ergodic theory, random walks, operator algebras, combinatorics, and theoretical computer science. This monograph offers a comprehensive introduction to the theory. It describes the two most important points of view on Property (T): the first uses a unitary group representation approach, and the second a fixed point property for affine isometric actions. Via these the authors discuss a range of important examples and applications to several domains of mathematics. A detailed appendix provides a systematic exposition of parts of the theory of group representations that are used to formulate and develop Property (T).
Erscheint lt. Verlag 2.5.2008
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
ISBN-10 0-511-38969-8 / 0511389698
ISBN-13 978-0-511-38969-6 / 9780511389696
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich