Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Pattern Recognition -  Konstantinos Koutroumbas,  Sergios Theodoridis

Pattern Recognition (eBook)

eBook Download: EPUB
2008 | 4. Auflage
984 Seiten
Elsevier Science (Verlag)
978-0-08-094912-3 (ISBN)
Systemvoraussetzungen
83,91 inkl. MwSt
(CHF 81,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback.

· Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques

· Many more diagrams included--now in two color--to provide greater insight through visual presentation

· Matlab code of the most common methods are given at the end of each chapter.

· More Matlab code is available, together with an accompanying manual, via this site

· Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms.

· An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary, and solved examples including real-life data sets in imaging, and audio recognition. The companion book will be available separately or at a special packaged price (ISBN: 9780123744869).

  • Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques
  • Many more diagrams included--now in two color--to provide greater insight through visual presentation
  • Matlab code of the most common methods are given at the end of each chapter
  • An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913)
  • Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms
  • Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on 'Theodoridis' to access resources for instructor.


  • Sergios Theodoridis is Professor of Signal Processing and Machine Learning in the Department of Informatics and Telecommunications of the University of Athens.

    He is the co-author of the bestselling book, Pattern Recognition, and the co-author of Introduction to Pattern Recognition: A MATLAB Approach.

    He serves as Editor-in-Chief for the IEEE Transactions on Signal Processing, and he is the co-Editor in Chief with Rama Chellapa for the Academic

    Press Library in Signal Processing.

    He has received a number of awards including the 2014 IEEE Signal Processing Magazine Best Paper Award, the 2009 IEEE Computational Intelligence Society Transactions on Neural Networks Outstanding Paper Award, the 2014 IEEE Signal Processing Society Education Award, the EURASIP 2014 Meritorious Service Award, and he has served as a Distinguished Lecturer for the IEEE Signal Processing Society and the IEEE Circuits and Systems Society. He is a Fellow of EURASIP and a Fellow of IEEE.


    This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. * Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques* Many more diagrams included--now in two color--to provide greater insight through visual presentation* Matlab code of the most common methods are given at the end of each chapter.* More Matlab code is available, together with an accompanying manual, via this site * Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms.* An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary, and solved examples including real-life data sets in imaging, and audio recognition. The companion book will be available separately or at a special packaged price (ISBN: 9780123744869). - Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques- Many more diagrams included--now in two color--to provide greater insight through visual presentation- Matlab code of the most common methods are given at the end of each chapter- An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913)- Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms- Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "e;Theodoridis"e; to access resources for instructor
    EPUBEPUB (Adobe DRM)

    Kopierschutz: Adobe-DRM
    Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
    Details zum Adobe-DRM

    Dateiformat: EPUB (Electronic Publication)
    EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
    Geräteliste und zusätzliche Hinweise

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    Mehr entdecken
    aus dem Bereich
    der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

    von Thomas R. Köhler; Julia Finkeissen

    eBook Download (2024)
    Campus Verlag
    CHF 37,95