Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Switch-Mode Power Converters -  Keng C. Wu

Switch-Mode Power Converters (eBook)

Design and Analysis

(Autor)

eBook Download: PDF
2005 | 1. Auflage
408 Seiten
Elsevier Science (Verlag)
978-0-08-045956-1 (ISBN)
Systemvoraussetzungen
94,95 inkl. MwSt
(CHF 92,75)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book introduces an innovative, highly analytical approach to symbolic, closed-form solutions for switched-mode power converter circuits. This is a highly relevant topic to power electronics students and professionals who are involved in the design and analysis of electrical power converters. The author uses extensive equations to explain how solid-state switches convert electrical voltages from one level to another, so that electronic devices (e.g., audio speakers, CD players, DVD players, etc.) can use different voltages more effectively to perform their various functions. Most existing comparable books published as recently as 2002 do not discuss closed-loop operations, nor do they provide either DC closed-loop regulation equations or AC loop gain (stability) formulae. The author Wu, a leading engineer at Lockheed Martin, fills this gap and provides among the first descriptions of how error amplifiers are designed in conjunction with closed-loop bandwidth selection.

BENEFIT TO THE READER:
Readers will gain a mathematically rigorous introduction to numerous, closed-form solutions that are readily applicable to the design and development of various switch-mode power converters.

* Provides symbolic, closed-form solutions for DC and AC studies
* Provides techniques for expressing close-loop operation
* Gives readers the ability to perform closed-loop regulation and sensitivity studies
* Gives readers the ability to design error amplifiers with precision
* Employs the concept of the continuity of states in matrix form
* Gives accelerated time-domain, steady-state studies using Laplace transform
* Gives accelerated time-domain studies using state transition
* Extensive use of matrix, linear algebra, implicit functions, and Jacobian determinants
* Enables the determination of power stage gain that otherwise could not be obtained
Switch-Mode Power Converters introduces an innovative, highly analytical approach to symbolic, closed-form solutions for switched-mode power converter circuits. This is a highly relevant topic to power electronics students and professionals who are involved in the design and analysis of electrical power converters. The author uses extensive equations to explain how solid-state switches convert electrical voltages from one level to another, so that electronic devices (e.g., audio speakers, CD players, DVD players, etc.) can use different voltages more effectively to perform their various functions. Most existing comparable books published as recently as 2002 do not discuss closed-loop operations, nor do they provide either DC closed-loop regulation equations or AC loop gain (stability) formulae. The author Wu, a leading engineer at Lockheed Martin, fills this gap and provides among the first descriptions of how error amplifiers are designed in conjunction with closed-loop bandwidth selection. BENEFIT TO THE READER: Readers will gain a mathematically rigorous introduction to numerous, closed-form solutions that are readily applicable to the design and development of various switch-mode power converters. Provides symbolic, closed-form solutions for DC and AC studies Provides techniques for expressing close-loop operation Gives readers the ability to perform closed-loop regulation and sensitivity studies Gives readers the ability to design error amplifiers with precision Employs the concept of the continuity of states in matrix form Gives accelerated time-domain, steady-state studies using Laplace transform Gives accelerated time-domain studies using state transition Extensive use of matrix, linear algebra, implicit functions, and Jacobian determinants Enables the determination of power stage gain that otherwise could not be obtained

Front Cover 1
Switch-Mode Power Converters: Design and Analysis 4
Copyright Page 5
Table of Contents 8
Preface 14
Chapter 1. Isolated Step-Down (Buck) Converter 18
1.1 CCM Open-Loop Output and Duty Cycle Determination 18
1.2 DCM Open-Loop Output and Duty Cycle Determination 22
1.3 CCM to DCM Transition, Critical Inductance 23
1.4 Gain Formula for Nonideal Operational Amplifiers 24
1.5 Feedback under Voltage-Mode Control 26
1.6 Voltage-Mode CCM Closed Loop 28
1.7 Voltage-Mode DCM Closed Loop 30
1.8 Voltage-Mode CCM Small-Signal Stability 31
1.9 Current-Mode Control 36
1.10 CCM Current-Mode Control in a Closed-Loop Steady State 38
1.11 CCM Current-Mode Control Small-Signal Stability 41
1.12 Output Capacitor Size and Accelerated Steady-State Analysis 43
1.13 A Complete Example 50
1.14 State Transition Technique 62
Chapter 2. Push–Pull Converter with Current-Mode Control and Slope Compensation 66
2.1 Power Stage of a Center-Tapped Push-Pull Converter 67
2.2 Discontinuous Conduction-Mode Operation 68
2.3 Continuous Conduction-Mode Operation 78
Chapter 3. Nonisolated Forward Converter with Average Current-Mode Control 84
3.1 Average Current Feedback 84
3.2 Duty Cycle Determination 88
3.3 Steady-State Closed Loop 89
3.4 Closed-Loop Regulation and Output Sensitivity 90
3.5 Small-Signal Loop Gain and Stability 91
3.6 Example 92
3.7 State Transition Technique 93
Chapter 4. Phase-Shifted Full-Bridge Converter 100
4.1 Power-Stage Operation 101
4.2 Current Doubler 101
4.3 Steady-State Duty Cycle 103
4.4 Steady-State Output Waveforms 104
4.5 Steady-State Output Waveforms Example 110
Chapter 5. Current-Fed Push–Pull Converters 112
5.1 Overlapping Continuous-Conduction Mode 114
5.2 Overlapping Continuous Conduction, Steady State 118
5.3 Overlapping Continuous Conduction, Example 122
5.4 Nonoverlapping Continuous-Conduction Mode 122
5.5 Load Current Sharing and Parallel Operation 125
5.6 AC Small-Signal Studies Using State-Space Averaging 130
5.7 State-Transition Technique 133
Chapter 6. Isolated Flyback Converters 136
6.1 DCM Duty-Cycle Determination, Another Approach 137
6.2 CCM Duty-Cycle Determination 138
6.3 Critical Inductance 140
6.4 Voltage-Mode DCM Closed Loop 140
6.5 Voltage-Mode DCM Small-Signal Stability 141
6.6 Voltage-Mode CCM Closed Loop 142
6.7 Voltage-Mode CCM Small-Signal Stability 143
6.8 Peak Current-Mode DCM Closed Loop 143
6.9 Peak Current-Mode DCM Small-Signal Stability 145
6.10 Peak Current-Mode CCM Closed Loop 146
6.11 Peak Current-Mode CCM Small-Signal Stability 147
6.12 Output Capacitor 149
6.13 Accelerated Steady-State Output 150
6.14 A Complete DCM Example 153
Chapter 7. Nonisolated Boost Converter 166
7.1 Duty-Cycle Determination 166
7.2 Critical Inductance 168
7.3 Peak Current-Mode Closed-Loop Steady State in CCM 168
7.4 Peak Current-Mode Small-Signal Stability in CCM 169
7.5 Peak Current-Mode Closed-Loop Steady State in DCM 170
7.6 Peak Current-Mode Small-Signal Stability in DCM 171
7.7 DCM Output Capacitor Size 172
7.8 CCM Output Capacitor Size 173
Chapter 8. Quasi-Resonant Converters 174
8.1 How Does It Work? 175
8.2 Mathematical Analysis 176
8.3 Steady-State Closed Loop and Stability 182
8.4 Design Issues 184
8.5 Example and Dilemma 185
Chapter 9. Class-E Resonant Converter 188
9.1 Starting States of the Steady State 192
9.2 Time-Domain Steady-State Solutions 199
9.3 Closed-Loop DC Analysis 201
9.4 Closed-Loop AC Analysis 204
9.5 Type II Amplifier 206
9.6 Example 208
9.7 Discussion 216
Chapter 10. AC–DC Power-Factor Correction Supplies 220
10.1 Fundamental Definition 221
10.2 Single-Phase Single-Stage Nonisolated Boost PFC 223
10.3 Output Capacitor Size 224
10.4 DCM Boost Inductor Selection 227
10.5 CCM Boost Inductor Selection 231
10.6 High-Power PFC and Load Sharing 234
10.7 Surge Protection 237
10.8 Load Short-Circuit Protection 239
10.9 Three-Phase PFC 240
Chapter 11. Error Amplifiers 254
11.1 Amplifier Category 255
11.2 Innate Phase of the Control Loop 259
11.3 Type II Amplifier Implementation 260
11.4 Type III Amplifier Implementation 262
11.5 Example for Type II Amplifier Implementation 264
Chapter 12. Supporting Circuits 266
12.1 Bipolar Switch Drivers 266
12.2 MOSFET Switch Drivers 272
12.3 Dissipative Snubber 276
12.4 Lossless Snubber 277
12.5 Isolated Feedback 278
12.6 Soft Start 280
12.7 Negative-Charge Pump 281
12.8 Single-Phase Full-Wave Rectifier with RC Filter 284
12.9 Duty-Cycle Clamping 290
Chapter 13. State-Space Averaging and the Cuk Converter 296
13.1 State-Space Averaging 296
13.2 General Procedure 299
13.3 Example: Cuk Converter 299
Chapter 14. Simulation 308
14.1 Dynamic Equations for a Forward Converter with Voltage-Mode Control 309
14.2 Turn-on Forward Converter with Voltage-Mode Control 315
14.3 Steady-State Forward Converter with Voltage-Mode Control 315
14.4 Steady State, Zoomed In 315
14.5 Load-Transient Forward Converter with Voltage-Mode Control 320
14.6 Dynamic Equations for a Forward Converter with Peak Current-Mode Control 323
14.7 Simulation, Forward Converter with Peak Current-Mode Control 327
14.8 State Transition Technique: Accelerated Steady State 330
Chapter 15. Power Quality and Integrity 344
15.1 Tolerance of Components, Devices, and Operating Conditions 346
15.2 DC Output Regulation and Worst Case Analysis 347
15.3 Supply Output Ripple and Noise 349
15.4 Supply Output Transient Responses 350
15.5 The Concepts of Frequency and Harmonic Content 352
15.6 Control-Loop Bandwidth 356
15.7 Step Response Test 359
15.8 Bandwidth and Stability 360
15.9 Electromagnetic Harmonic Emissions 364
15.10 Power Quality 365
Appendixes 370
A. Additional Filtering for Forward-Converter Current Sensing 370
B. MathCAD Listing, Steady-State Output for Figure 1.42 372
C. MATLAB Listing, Steady-State Output for Figure 1.42 378
D. MathCAD Listing, Steady-State Current-Sensing Output 382
E. MATLAB Listing, Converter Simulation 388
F. Capacitor and Inductor 396
G. MATLAB Listing for an Input Filter with a Pulsating Load 398
References 402
Index 404

Erscheint lt. Verlag 1.12.2005
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Technik Elektrotechnik / Energietechnik
ISBN-10 0-08-045956-0 / 0080459560
ISBN-13 978-0-08-045956-1 / 9780080459561
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 65,45