Crystal Growth - From Fundamentals to Technology (eBook)
434 Seiten
Elsevier Science (Verlag)
978-0-08-047307-9 (ISBN)
The book contains 5 chapters with 19 contributions form internationally well acknowledged experts in various fields of crystal growth. The topics are ranging from fundamentals (thermodynamic of epitaxy growth, kinetics, morphology, modeling) to new crystal materials (carbon nanocrystals and nanotubes, biological crystals), to technology (Silicon Czochralski growth, oxide growth, III-IV epitaxy) and characterization (point defects, X-ray imaging, in-situ STM). It covers the treatment of bulk growth as well as epitaxy by anorganic and organic materials.
Cover 1
Preface 5
Acknowledgement 7
Contents 9
Thermodynamics of Modern Epitaxial Growth Processes 13
Introduction 14
Thermodynamic Driving Force for Epitaxy 15
Binary Phase Diagrams 19
Surface Phase Diagrams 24
Solution Thermodynamics 26
Surface Thermodynamics 30
Effect of Surface on Growth Processes 31
Effects of Surfactants 33
Antimony 33
Summary 36
Acknowledgements 36
References 36
Actual Concepts of Interface Kinetics 39
General Considerations 39
Atoms at an Interface 39
General Equation for the Growth Rate of Crystals 40
Entropy Change on Crystallization 42
Early Models for Melt Growth 42
Growth Rate from the Melt 43
Nucleation of Layers 44
Growth on Screw Dislocations 44
Molecular Dynamics Simulations of Crystal Growth 44
Crystallization from the Melt 44
The Kossel-Stranski Model 46
Bonding at an Interface 47
Surface Roughness 48
Monte Carlo Simulations of Crystallization 49
Equilibrium Surface Structure 50
Monte Carlo Computer Simulation Results 50
Simulations of Silicon Growth 52
Kinetic Roughening 53
The Fluctuation Dissipation Theorem 54
Interface Fluctuations 54
Determination of the Kinetic Coefficient from Fluctuations 57
Non-Equilibrium Segregation in Binary Systems 58
Experimental Observations 58
Monte Carlo Computer Modeling 59
Analytical Model 61
Comparison with Experiment 62
Acknowlegement 64
References 64
Theory of Crystal Growth Morphology 67
Introduction 68
Equilibrium and Kinetic Wulff Shapes 68
Equilibrium Shape 69
Herring Sphere 70
Analytical Criteria for Missing Orientations 71
Illustration for Cubic Symmetry 74
Kinetic Wulff Shape 77
Long-Range Transport 78
Morphological Stability 79
Directional Solidification, Single Component 80
Directional Solidification, Binary Alloy 85
Non-Planar Base States 90
Nonlinearities 93
Phase Field Model 95
Basis of the Model 95
Discussion and Conclusions 98
Acknowledgment 101
References 102
Crystallization Physics in Biomacromolecular Solutions 107
Biomacromolecule-Structure and Function 107
The Techniques 109
Nucleation 111
Making Solution Supersaturated 111
Nucleation Rate 112
Time lag 113
Macroscopic Observations 113
Light Scattering 114
Processes in the Cluster-Solution Mixture 117
Crystal Growth 119
Crystal Growth Kinetics 119
Facetting 121
Biocrystal Perfection 121
Types of Defects 121
Trapping of Impurities 122
Conclusions 123
References 124
Dendritic Crystal Growth in Microgravity 127
History and Background 128
Approach 128
Steady-State Characteristics of Dendrites 128
Time-Dependent Aspects of Dendrites 129
Physico-Chemical Basis for Dendritic Growth 130
Thermodynamics and Kinetics of Dendritic Crystal Growth 131
Anisotropy 132
Steady-State Dendritic Growth 134
Transport Theory 134
Ivantsov's Transport Solution 134
Interfacial Physics 136
Experimental Verification 139
Model Test Systems 139
Microgravity Experiments 140
IDGE 142
Verification of Transport Theory 144
Verification of Interfacial Physics 147
Scaling Constants for Dendritic Growth 147
Applications of Microgravity Data 148
Summary and Conclusions 149
Acknowledgment 151
References 152
Modeling of Crystal Growth Processes 155
Introduction 155
Historical Overview 157
Modeling Approaches 159
Governing Equations for Continuum Transport 159
Boundary Conditions 161
Interface Growth 163
Radiation Heat Transfer 164
Magnetic Fields 165
Turbulence 165
Numerical Methods 166
Discretization of Field Equations 166
Interface Representation 167
Deforming Grids and ALE Methods 169
Quasi-Steady-State Models 170
Sample Modeling Results 171
Axisymmetric Analysis: Effects of ACRT 172
Three-Dimensional Analysis: Effects of Ampoule Tilt and Slow Rotation 173
Summary and Outlook 174
Acknowledgments 175
Nomenclature 175
References 176
Modeling of Fluid Dynamics in the Czochralski Growth of Semiconductor Crystals 181
Introduction 181
Effects of Internal and External Forces 182
Effects of Temperature and of Crystal and Crucible Rotations 182
Effects of Steady Electromagnetic Forces 186
Effects of Dynamic Electromagnetic Forces 186
Vertical Magnetic Fields 187
Transverse Magnetic Fields 189
Parallel Computing 193
Visualization Method 194
Summary 196
References 197
Molecular Simulations of Crystal Growth Processes 199
Introduction 199
Computer Simulation vs Computer Experiment 200
Generic Crystal Growth Models:Kossel and Lennard-Jones 201
The Kossel Model, for Growth from Vapour and from Solution 201
The Lennard-Jones Model for Growth from a Melt 201
Basic Statistical Thermodynamics 203
Molecular Dynamics and Monte Carlo Simulation 204
Measuring Macroscopic Quantities 204
Molecular Dynamics Simulation 205
Monte Carlo Simulation 205
Comparison of Molecular Dynamics and Monte Carlo 205
Generic Crystal Morphology Theories 206
Classical Morphology Rules 206
Lattice Models 206
Lennard-Jones Morphology 207
Smart Choice of Models and Experiments 208
Choosing a Smart Model: Striped Phases in Biomembranes 208
Choosing a Smart Experiment: Double-Pulse Nucleation 209
Smart Approximations for Models and Dynamics 211
Coarsening the Temporal Resolution: DPD Simulation 211
Coarsening the Spatial Resolution: Continuum Dynamics 211
Modifying the Interaction Potential: Umbrella Sampling 212
Modifying the State Generation Method: Configuration Bias Monte Carlo 213
Using Only Successes: Transition Path Sampling 213
Characterizing Atomic Scale Structure 214
Definition and Characterization of the Neighbourhood of a Particle 214
Structure Assessment by Ensemble of Force Networks 218
Estimating Free Energies and Supersaturation 219
Virtual Particle Insertion and Removal 220
Thermodynamic Integration Methods 221
Example: Ice and Water Phase Diagram for Rigid H2O Models 222
Conclusion 223
Acknowledgement 223
References 223
Dislocation Patterns in Crystalline Solids - Phenomenology and Modelling 227
Introduction 227
Dislocation Dynamics:Fundamentals 229
Forces and Interactions in Dislocation Systems 229
Dislocation Motion and Plastic Flow 230
Scaling Relations for Dislocation Patterns 231
Discrete Dislocation Dynamics (DDD) Simulations 234
DDD Simulation of 3-Dimensional Dislocation Systems 234
DDD Simulation of 2-Dimensional Dislocation Systems 237
Continuum Dislocation Dynamics Approaches 238
Linear Irreversible Thermodynamics and Energy Minimization 238
Synergetic Models 242
Stochastic Approaches 243
Discrete Stochastic Dislocation Dynamics 243
Continuum Stochastic Dislocation Dynamics 245
Conclusions 248
Acknowledgements 249
References 249
Silicon Crystal Growth 251
General Aspects of Silicon Crystal Growth 251
Technological Relevance of Crystal Defects 253
Thermophysical Properties of Intrinsic Point Defects 254
Aggregates of Intrinsic Point Defects 255
Experimental Observations 255
Theoretical Model: Incorporation of Intrinsic Point Defects 257
Theoretical Model: Aggregation of Instrinsic Point Defects 261
Effect of Impurities on Intrinsic Point Defect Aggregation 264
Nitrogen 264
Boron 267
Carbon 267
Formation of OSF Ring 268
Czochralski Crystal Growth 271
Floating Zone Crystal Growth 275
Summary/Outlook 277
Acknowledgement 278
References 278
Microchannel Epitaxy- Physics of Lateral and Vertical Growth and its Applications 283
Introduction 283
Concept of Microchannel Epitaxy 284
MCE Experiments by LPE 286
Si 286
GaAs 288
GaAs on GaAs 288
GaAs on Si 288
InPand GaP 292
InP 292
GaP 293
Coalescence of MCE Layers 295
Lateral Coalescence from Two Parallel Seeds 296
Lateral Coalescence from Non-Parallel Seeds 297
Microchannel Epitaxy of GaAs by MBE 300
Vertical Microchannel Epitaxy (V-MCE) of GaAs 300
Microchannel Epitaxy of GaAs by Low Angle Incidence MBE 301
Conclusions 303
Acknowledgements 304
References 304
Epitaxial Technologies for Short Wavelength Optoelectronic Devices 307
Introduction 307
Molecular Beam Epitaxy 308
In-situ Characterization Methods 309
Growth of ZnSe-based Devices 311
Edge-emitting Laser Diodes 311
CdSe Quantum Dots 313
Vertical-Cavity Surface-Emitting Laser 314
Metalorganic Vapor Phase Epitaxy 314
Gas System and Precursors 314
Reaction Kinetics 315
Reactor 316
Reflectometry and Nucleation Scheme 317
Hydride Vapor Phase Epitaxy 320
Basic Principles of HVPE 320
Chemistry - Reactions and Precursors 320
Thermodynamics and Kinetics of the HVPE GaN Growth Process 321
Reactor Designs 322
Substrates 323
Nucleation Schemes 323
Material Characterization 324
Structural and Optical Quality 324
Microstructure 324
Morphology 326
Conclusions 327
References 327
Solution Growth Methods at Low and High Temperatures 331
Materials and Crystal Growth for Photovoltaics 333
Point Defects in Compound Semiconductors 335
Introduction 335
Some Experimental Techniques for the Determination of Native Point Defect Concentrations and their Charge States 336
Coulometric Titration 336
Density/Lattice Parameter Measurements 337
Positron Annihilation 338
X-Ray Quasi-Forbidden Reflection 338
Diffusion Studies 338
Scanning Tunnelling Microscopy 339
Spectroscopic Techniques 339
Carrier Concentration and Mobility Measurements 339
Thermodynamic Modelling of Dopant Solubility Data 339
Theroretical Modelling of Native Point Defect Configurations and their Formation and Ionisation Energies 340
Introduction 340
Neutral Species 341
Charged Native Point Defects and Electroneutrality 342
Isolated Native Point Defects 342
Vacancies 342
Self Interstitials 343
Antisite Defects 343
The Cooling Crystal 344
Phase Extent 345
Doping 348
The Donor-Cation Vacancy Complex 348
Acceptor-Anion Vacancy Complexes 349
Cation Vacancy under-Saturation during Cooling of n+ Crystals 349
Annealing 351
Self Diffusion in GaAs 351
Radio-Tracer Self Diffusion Measurements 351
Gallium Sub-Lattice Diffusion 351
Arsenic Sub-Lattice Diffusion 352
Dopant Diffusion in GaAs 352
As-Sub-Lattice Diffusion 352
Ga Sub-Lattice Diffusion 353
Conclusion 353
References 353
Synchrotron Radiation X-Ray Imaging: A Tool for Crystal Growth 357
Introduction 357
Absorption and Phase Imaging 358
Absorption Radiography 358
Microtomography 359
Phase Imaging 361
Microbeam-Based X-Ray Imaging 365
Bragg Diffraction Imaging "X-Ray Topography" 366
Basic Principles of X-Ray Diffraction Topography 366
Some Results of Dynamical Diffraction Theory 367
Effect of Imperfections: Contrast Mechanisms 369
Diffraction Topographic Techniques 372
Simulation of X-Ray Topographs 374
Examples of Application of Synchrotron Radiation Imaging Techniques to Crystal Growth 375
Propagation of Defects from the Seed to the Growing Crystal 376
Simultaneous Phase and Diffraction Imaging of Porosity in Quasicrystals 376
Real Time Investigation of the Growth of Metallic Alloys 377
Bragg Diffraction Imaging using a Coherent Beam 377
Conclusion 378
References 379
Macromolecular Crystals - Growth and Characterization 381
Introduction 381
Crystallization Techniques of Biological Macromolecules 382
X-Ray Characterization Techniques 384
Rocking Curves 386
Reciprocal Space Mapping 389
Topography 390
Combining Methods 393
Crystal Quality for Structural Analysis 394
Other Characterization Techniques 398
Optical Microscopy 398
Atomic Force Microscopy 399
Electron Microscopy and Electron Diffraction 399
Acknowledgments 400
References 400
In-Situ Analysis of Thin Film Growth using STM 403
Introduction 403
Experimental 406
Examples Illustrating Epitaxial Growth 410
Surface Diffusion 410
Nucleation and Island Growth 413
Layer-by-Layer-Growth and Kinetic Roughening 414
Inhomogeneous Nucleation 418
Relaxation Processes after Growth 420
Alloy Formation 422
Conclusion 423
References 424
Index 425
Erscheint lt. Verlag | 7.7.2004 |
---|---|
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber |
Naturwissenschaften ► Chemie | |
Naturwissenschaften ► Geowissenschaften ► Mineralogie / Paläontologie | |
Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
Technik | |
ISBN-10 | 0-08-047307-5 / 0080473075 |
ISBN-13 | 978-0-08-047307-9 / 9780080473079 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich