Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Digital Power Electronics and Applications -  Fang Lin Luo,  Muhammad H. Rashid,  Hong Ye

Digital Power Electronics and Applications (eBook)

eBook Download: PDF
2010 | 1. Auflage
464 Seiten
Elsevier Science (Verlag)
978-0-08-045902-8 (ISBN)
Systemvoraussetzungen
97,15 inkl. MwSt
(CHF 94,90)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The purpose of this book is to describe the theory of Digital Power Electronics and its applications. The authors apply digital control theory to power electronics in a manner thoroughly different from the traditional, analog control scheme. In order to apply digital control theory to power electronics, the authors define a number of new parameters, including the energy factor, pumping energy, stored energy, time constant, and damping time constant. These parameters differ from traditional parameters such as the power factor, power transfer efficiency, ripple factor, and total harmonic distortion. These new parameters result in the definition of new mathematical modeling:

. A zero-order-hold (ZOH) is used to simulate all AC/DC rectifiers.
. A first-order-hold (FOH) is used to simulate all DC/AC inverters.
. A second-order-hold (SOH) is used to simulate all DC/DC converters.
. A first-order-hold (FOH) is used to simulate all AC/AC (AC/DC/AC) converters.

* Presents most up-to-date methods of analysis and control algorithms for developing
power electronic converters and power switching circuits
* Provides an invaluable reference for engineers designing power converters, commercial
power supplies, control systems for motor drives, active filters, etc.
* Presents methods of analysis not available in other books.
The purpose of this book is to describe the theory of Digital Power Electronics and its applications. The authors apply digital control theory to power electronics in a manner thoroughly different from the traditional, analog control scheme. In order to apply digital control theory to power electronics, the authors define a number of new parameters, including the energy factor, pumping energy, stored energy, time constant, and damping time constant. These parameters differ from traditional parameters such as the power factor, power transfer efficiency, ripple factor, and total harmonic distortion. These new parameters result in the definition of new mathematical modeling:* A zero-order-hold (ZOH) is used to simulate all AC/DC rectifiers.* A first-order-hold (FOH) is used to simulate all DC/AC inverters.* A second-order-hold (SOH) is used to simulate all DC/DC converters.* A first-order-hold (FOH) is used to simulate all AC/AC (AC/DC/AC) converters. - Presents most up-to-date methods of analysis and control algorithms for developing power electronic converters and power switching circuits- Provides an invaluable reference for engineers designing power converters, commercial power supplies, control systems for motor drives, active filters, etc. - Presents methods of analysis not available in other books

Cover 1
Digital Power Electronics and Applications 4
Contents 6
Preface 10
Autobiography 12
1. Introduction 14
1.1 Historical review 14
1.1.1 WORK, ENERGY AND HEAT 14
1.1.2 DC AND AC EQUIPMENT 15
DC Power Supply 15
AC Power Supply 15
1.1.3 LOADS 16
Linear Passive Loads 16
Linear Dynamic Loads 16
1.1.4 IMPEDANCE 17
1.1.5 POWERS 18
Apparent Power S 19
Power P 19
Reactive Power Q 19
1.2 Traditional parameters 20
1.2.1 POWER FACTOR (PF) 20
1.2.2 POWER-TRANSFER EFFICIENCY (& #951
1.2.3 TOTAL HARMONIC DISTORTION (THD) 20
1.2.4 RIPPLE FACTOR (RF) 21
1.2.5 APPLICATION EXAMPLES 21
Power and Efficiency (& #951
An R–L Circuit Calculation 23
A Three-Phase Circuit Calculation 24
1.3 Multiple-quadrant operations and choppers 29
1.3.1 THE FIRST-QUADRANT CHOPPER 30
1.3.2 THE SECOND-QUADRANT CHOPPER 31
1.3.3 THE THIRD-QUADRANT CHOPPER 32
1.3.4 THE FOURTH-QUADRANT CHOPPER 32
1.3.5 THE FIRST–SECOND-QUADRANT CHOPPER 33
1.3.6 THE THIRD–FOURTH-QUADRANT CHOPPER 34
1.3.7 THE FOUR-QUADRANT CHOPPER 35
1.4 Digital power electronics: pump circuits and conversion technology 35
1.4.1 FUNDAMENTAL PUMP CIRCUITS 36
1.4.2 AC/DC RECTIFIERS 37
1.4.3 DC/AC PWM INVERTERS 37
1.4.4 DC/DC CONVERTERS 37
1.4.5 AC/AC CONVERTERS 42
1.5 Shortage of analog power electronics and conversion technology 44
1.6 Power semiconductor devices applied in digital power electronics 45
FURTHER READING 45
2. Energy Factor (EF) and Sub-sequential Parameters 47
2.1 Introduction 47
2.2 Pumping energy (PE) 48
2.2.1 ENERGY QUANTIZATION 49
2.2.2 ENERGY QUANTIZATION FUNCTION 49
2.3 Stored energy (SE) 49
2.3.1 STORED ENERGY IN CONTINUOUS CONDUCTION MODE 49
Stored Energy (SE) 49
Capacitor–Inductor Stored Energy Ratio (CIR) 50
Energy Losses (EL) 50
Stored Energy Variation on Inductors and Capacitors (VE) 51
2.3.2 STORED ENERGY IN DISCONTINUOUS CONDUCTION MODE (DCM) 52
2.4 Energy factor (EF) 53
2.5 Variation energy factor (EF[sub(V)]) 54
2.6 Time constant, & #964
2.6.1 TIME CONSTANT, & #964
2.6.2 DAMPING TIME CONSTANT, & #964
2.6.3 TIME CONSTANT RATIO, & #958
2.6.4 MATHEMATICAL MODELING FOR POWER DC/DC CONVERTERS 56
2.7 Examples of applications 56
2.7.1 A BUCK CONVERTER IN CCM 56
Buck Converter without Energy Losses (r[sub(L)] = 0& #937
Buck Converter with Small Energy Losses (r[sub(L)] = 1.5& #937
Buck Converter with Energy Losses (r[sub(L)] = 4.5& #937
Buck Converter with Large Energy Losses (r[sub(L)] = 6& #937
2.7.2 A SUPER-LIFT LUO-CONVERTER IN CCM 67
2.7.3 A BOOST CONVERTER IN CCM (NO POWER LOSSES) 70
2.7.4 A BUCK–BOOST CONVERTER IN CCM (NO POWER LOSSES) 72
2.7.5 POSITIVE-OUTPUT LUO-CONVERTER IN CCM (NO POWER LOSSES) 76
2.8 Small signal analysis 78
2.8.1 A BUCK CONVERTER IN CCM WITHOUT ENERGY LOSSES (r[sub(L)] = 0) 80
2.8.2 BUCK-CONVERTER WITH SMALL ENERGY LOSSES (r[sub(L)] = 1.5& #937
2.8.3 SUPER-LIFT LUO-CONVERTER WITH ENERGY LOSSES (r[sub(L)] = 0.12& #937
FURTHER READING 88
APPENDIX A – A SECOND-ORDER TRANSFER FUNCTION 90
A.1 Very Small Damping Time Constant 90
A.2 Small Damping Time Constant 90
A.3 Critical Damping Time Constant 92
A.4 Large Damping Time Constant 93
APPENDIX B – SOME CALCULATION FORMULAE DERIVATIONS 95
B.1 Transfer Function of Buck Converter 95
B.2 Transfer Function of Super-Lift Luo-converter 95
B.3 Simplified Transfer function of Super-Lift Luo-converter 95
B.4 Time Constants & #964
3. Basic Mathematics of Digital Control Systems 98
3.1 Introduction 98
3.2 Digital Signals and Coding 104
3.3 Shannon’s sampling theorem 107
3.3.1 BRIEF INTRODUCTION TO NYQUIST SAMPLING THEORY 107
3.3.2 SHANNON SAMPLING THEOREM 107
3.4 Sample-and-hold devices 108
3.4.1 DIGITAL WORDS AND CODES 108
3.4.2 SAMPLING PROCESS 108
3.5 Analog-to-digital conversion 112
3.5.1 A/D CONVERSION PROCESS 112
3.5.2 A/D CONVERTERS 113
3.6 Digital-to-analog conversion 114
3.6.1 D/A CONVERSION PROCESS 114
3.6.2 D/A CONVERTERS 115
3.6.3 A/D AND D/A CONVERSION ERRORS 116
3.7 Energy quantization 117
3.8 Introduction to reconstruction of sampled signals 119
3.9 Data conversion: the zero-order hold 120
3.10 The first-order hold 123
3.11 The second-order hold 125
3.11.1 VERY SMALL DAMPING TIME CONSTANT & #964
3.11.2 SMALL DAMPING TIME CONSTANT & #964
3.11.3 CRITICAL DAMPING TIME CONSTANT & #964
3.11.4 LARGE DAMPING TIME CONSTANT & #964
3.12 The Laplace transform (the s-domain) 131
3.13 The z-transform (the z-domain) 131
FURTHER READING 135
4. Mathematical Modeling of Digital Power Electronics 136
4.1 Introduction 136
4.2 A zero-order hold (ZOH) for AC/DC controlled rectifiers 138
4.2.1 TRADITIONAL MODELING FOR AC/DC CONTROLLED RECTIFIERS 140
4.2.2 A ZERO-ORDER HOLD FOR AC/DC CONTROLLED RECTIFIERS IN DIGITAL CONTROL 141
4.3 A first-order transfer function for DC/AC pulse-width-modulation inverters 141
4.3.1 TRADITIONAL MODELING FOR DC/AC PWM INVERTERS 143
4.3.2 A FIRST-ORDER HOLD FOR DC/AC PWM INVERTERS IN DIGITAL CONTROL 144
4.4 A second-order transfer function for DC/DC converters 145
4.4.1 TRADITIONAL MODELING FOR DC/DC CONVERTERS 148
4.4.2 A SECOND-ORDER HOLD FOR DC/DC CONVERTERS IN DIGITAL CONTROL 149
4.5 A first-order transfer function for AC/AC (AC/DC/AC) converters 149
4.5.1 TRADITIONAL MODELING FOR AC/DC CONTROLLED RECTIFIERS 151
4.5.2 A FOH FOR AC/AC CONVERTERS IN DIGITAL CONTROL 152
FURTHER READING 153
5. Digitally Controlled AC/DC Rectifiers 155
5.1 Introduction 155
5.1.1 SINGLE-PHASE HALF-WAVE DIODE RECTIFIER 157
5.1.2 SINGLE-PHASE FULL-WAVE DIODE RECTIFIER 158
Parameters 158
Power Factor 158
5.1.3 THREE-PHASE HALF-WAVE DIODE RECTIFIER 159
5.1.4 THREE-PHASE FULL-WAVE DIODE RECTIFIER 160
5.1.5 THREE-PHASE DOUBLE-ANTI-STAR WITH INTERPHASE-TRANSFORMER RECTIFIER 160
5.1.6 SIX-PHASE HALF-WAVE DIODE RECTIFIER 162
5.1.7 SIX-PHASE FULL-WAVE DIODE RECTIFIER 164
5.2 Mathematical modeling for AC/DC rectifiers 164
5.3 Single-phase half-wave controlled AC/DC rectifier 166
5.4 Single-phase full-wave AC/DC rectifier 167
5.5 Three-phase half-wave controlled AC/DC rectifier 168
5.6 Three-phase full-wave controlled AC/DC rectifier 168
5.7 Three-phase double-anti-star with interphase-transformer controlled AC/DC rectifier 169
5.8 Six-phase half-wave controlled AC/DC rectifier 171
5.9 Six-phase full-wave controlled AC/DC rectifier 172
FURTHER READING 174
6. Digitally Controlled DC/AC Inverters 175
6.1 Introduction 175
6.1.1 SINGLE-PHASE HALF-BRIDGE VSI 177
6.1.2 SINGLE-PHASE FULL-BRIDGE VSI 178
6.1.3 THREE-PHASE FULL-BRIDGE VSI 180
6.1.4 THREE-PHASE FULL-BRIDGE CSI 180
6.1.5 MULTISTAGE PWM INVERTER 180
6.1.6 MULTILEVEL PWM INVERTER 183
6.2 Mathematical modeling for DC/AC PWM inverters 185
6.3 Single-phase half-wave VSI 187
6.4 Single-phase full-bridge PWM VSI 188
6.5 Three-phase full-bridge PWM VSI 188
6.6 Three-phase full-bridge PWM CSI 189
6.7 Multistage PWM inverter 189
6.8 Multilevel PWM inverter 189
FURTHER READING 190
7. Digitally Controlled DC/DC Converters 191
7.1 Introduction 191
7.1.1 THE FIRST-GENERATION CONVERTERS 191
Fundamental converters 192
Buck converter 192
Boost converter 193
Buck–Boost converter 193
Transformer-Type Converters 194
Forward converter 194
Push–Pull Converter 195
Fly-back Converter 196
Half-bridge converter 196
Bridge Converter 197
Zeta Converter 197
Forward Converter with Tertiary Winding and Multiple Outputs 198
Developed Converters 198
P/O Luo-Converter 199
N/O Luo-Converter 199
D/O Luo-Converter 199
Cúk-Converter 199
SEPIC 200
Voltage-Lift Converters 201
Super-Lift Converters 202
7.1.2 THE SECOND-GENERATION CONVERTERS 205
7.1.3 THE THIRD-GENERATION CONVERTERS 206
Switched-Capacitor Converters 207
Switched-Inductor Converters 207
7.1.4 THE FOURTH-GENERATION CONVERTERS 208
Zero-Current-Switching Quasi-Resonant Converters 209
Zero-Voltage-Switching Quasi-Resonant Converters 209
Zero-Transition Converters 211
7.1.5 THE FIFTH-GENERATION CONVERTERS 212
7.1.6 THE SIXTH-GENERATION CONVERTERS 213
7.1.7 ALL PROTOTYPES AND DC/DC CONVERTER FAMILY TREE 215
7.2 Mathematical Modeling for power DC/DC converters 215
7.3 Fundamental DC/DC converter 218
7.4 Developed DC/DC converters 221
7.5 Soft-switching converters 222
7.6 Multi-element resonant power converters 226
FURTHER READING 233
8. Digitally Controlled AC/AC Converters 234
8.1 Introduction 234
8.1.1 SINGLE-PHASE AC/AC VOLTAGE CONTROLLER 235
Phase Angle Control 235
On/Off Control 238
PWMAC Chopper Control 239
8.1.2 THREE-PHASE AC/AC VOLTAGE CONTROLLER 240
Phase Angle Control 240
On/Off Control 242
PWMAC/AC Control 242
8.1.3 SISO CYCLOCONVERTERS 242
8.1.4 TISO CYCLOCONVERTERS 246
8.1.5 TITO CYCLOCONVERTERS 246
8.1.6 AC/DC/AC CONVERTERS 248
8.1.7 MATRIX CONVERTERS 248
Venturini Method 253
SVM Method 255
Control Implementation and Comparison of the Two Methods 256
8.2 Traditional modeling for AC/AC (AC/DC/AC) converters 257
8.3 Single-phase AC/AC converter 258
8.4 Three-phase AC/AC voltage controllers 258
8.5 SISO cycloconverters 259
8.6 TISO cycloconverters 259
8.7 TITO cycloconverters 259
8.8 AC/DC/AC PWM converters 259
8.9 Matrix converters 260
FURTHER READING 260
9. Open-loop Control for Digital Power Electronics 262
9.1 Introduction 262
9.1.1 STABILITY ANALYSIS 262
Converters Open-Loop Analysis 263
Analysis of Converters with a First-Order Load 264
Analysis of Converters with a First-Order Load Plus an Integral Element 265
9.1.2 UNIT-STEP RESPONSES 265
Analysis of Converters with a First-Order Load 266
Analysis of Converters with a First-Order Load Plus an Integral Element 266
9.1.3 IMPULSE RESPONSES 267
Analysis of Converters with a First-Order Load 267
Analysis of Converters with a First-Order Load Plus an Integral Element 268
9.2 Stability analysis 269
9.2.1 AC/DC RECTIFIERS 269
AC/DC Rectifiers Open-Loop Analysis 269
Analysis of AC/DC Rectifiers with a First-Order Load 270
Analysis of Rectifiers with a First-Order Load Plus an Integral Element 270
9.2.2 DC/AC INVERTERS AND AC/AC (AC/DC/AC) CONVERTERS 271
Open-Loop Stability Analysis for DC/AC Inverters and AC/AC (AC/DC/AC) Converters 271
Open-Loop Stability Analysis for DC/AC Inverters and AC/AC (AC/DC/AC) Converters with a First-Order Load 272
Open-Loop Stability Analysis for DC/AC Inverters and AC/AC (AC/DC/AC) Converters with a First-Order Load Plus an Integral Element 272
9.2.3 DC/DC CONVERTERS 273
Converters Open-Loop Analysis 275
Analysis of Converters with a First-Order Load 276
Analysis of DC/DC Converters with a First-Order Load Plus an Integral Element 279
9.3 Unit-step function responses 282
9.3.1 AC/DC RECTIFIERS 282
AC/DC Rectifiers Open-Loop Analysis 282
Analysis of AC/DC Rectifiers with a First-Order Load 283
Analysis of Rectifiers with a First-Order Load Plus an Integral Element 283
9.3.2 DC/AC INVERTERS AND AC/AC (AC/DC/AC) CONVERTERS 284
Open-Loop Unit-Step Response Analysis 284
Analysis of an FOH with a First-Order Load 284
Analysis of an FOH with a First-Order Load Plus an Integral Element 285
9.3.3 DC/DC CONVERTERS 285
Converters Open-Loop Analysis 286
Analysis of DC/DC Converters with a First-Order Load 288
Analysis of DC/DC Converters with a First-Order Load Plus an Integral Element 290
9.4 Impulse responses 293
9.4.1 IMPULSE RESPONSE OF THE CONVERTER OPEN-LOOP SYSTEMS 293
9.4.2 IMPULSE RESPONSE OF THE CONVERTER WITH A FIRST-ORDER CIRCUIT 294
9.4.3 IMPULSE RESPONSE OF THE CONVERTER WITH A FIRST-ORDER CIRCUIT PLUS AN INTEGRAL ELEMENT 294
9.5 Summary 294
FURTHER READING 294
10. Closed-Loop Control for Digital Power Electronics 296
10.1 Introduction 296
10.1.1 PI CONTROLLER 296
Stability Analysis 297
Unit-Step-Function Responses 297
Closed-Loop Control 298
10.1.2 PROPORTIONAL-PLUS-INTEGRAL-PLUS-DIFFERENTIAL CONTROLLER 298
Stability Analysis 300
Unit-Step-Function Responses 300
Closed-Loop Control 300
10.2 PI control for AC/DC rectifiers 301
10.2.1 STABILITY ANALYSIS 301
Analysis of Rectifiers with a First-Order Load 302
Analysis of Rectifiers with a First-Order Load Plus an Integral Element 304
10.2.2 UNITY-STEP RESPONSES 306
Analysis of Rectifiers with a First-Order Load 306
Analysis of Rectifiers with a First-Order Load Plus an Integral Element 307
10.2.3 IMPULSE RESPONSES 308
Analysis of Rectifiers with a First-Order Load 309
Analysis of Rectifiers with a First-Order Load Plus an Integral Element 310
10.3 PI control for DC/AC inverters and AC/AC (AC/DC/AC) converters 311
10.3.1 STABILITY ANALYSIS 312
Analysis of Rectifiers with a First-Order Load 313
Analysis of Rectifiers with a First-Order Load Plus an Integral Element 314
10.3.2 UNIT-STEP RESPONSE FOR PI CONTROLLED DC/AC INVERTERS AND AC/AC (AC/DC/AC) CONVERTERS 315
Analysis of an FOH with a First-Order Load 315
Analysis of the FOH with a First-Order Load Plus an Integral Element 316
10.3.3 IMPULSE RESPONSE FOR PI CONTROLLED DC/AC INVERTERS AND AC/AC (AC/DC/AC) CONVERTERS 316
Analysis of the FOH with a First-Order Load 317
Analysis of the FOH with a First-Order Load Plus an Integral Element 318
10.4 PID control for DC/DC converters 318
10.4.1 STABILITY ANALYSIS OF PID CONTROLLED DC/DC CONVERTERS 318
Analysis of DC/DC Converters with a First-Order Load 319
Analysis of DC/DC Converters with a First-Order Load Plus an Integral Element 321
10.4.2 UNIT-STEP RESPONSE FOR PID CONTROLLED DC/DC CONVERTERS 321
Analysis of an SOH with a First-Order Load 323
Analysis of the SOH with a First-Order Load Plus an Integral Element 323
10.4.3 IMPULSE RESPONSE FOR PID CONTROLLED DC/DC CONVERTERS 324
Analysis of the SOH with a First-Order Load 325
Analysis of the SOH with a First-Order Load Plus an Integral Element 325
FURTHER READING 326
11. Energy Factor Application in AC and DC Motor Drives 327
11.1 Introduction 327
11.2 Energy storage in motors 328
11.2.1 ENERGY STORAGE IN AC MOTOR 328
Mechanical Energy Storage 329
Electrical Energy Storage 329
11.2.2 ENERGY STORAGE IN DC MOTOR 329
Mechanical Energy Storage 329
Electrical Energy Storage 330
11.3 A DC/AC voltage source 330
11.3.1 ZERO-PHASE ODD-HARMONIC REPETITIVE CONTROL 331
Odd-Harmonic Periodic Signal Generator 331
Odd-Harmonic Repetitive Control 332
Phase Cancellation Compensation 334
11.3.2 ZERO-PHASE ODD-HARMONIC REPETITIVE CONTROLLED PWM INVERTER 335
Modeling of the System 335
Zero-Phase Odd-Harmonic Control 337
11.3.3 EXPERIMENTAL VERIFICATION 338
Steady-State Response 339
Transient Response 341
Sudden Step Load Change 344
11.3.4 SUMMARY 344
11.4 An AC/DC current source 346
11.4.1 SYSTEM ARRANGEMENT 348
PI-Controller 348
ZOH to Simulate the SCR 348
The First-Order Load 349
Disturbance Signal 349
11.4.2 SYSTEM STABILITY ANALYSIS 350
11.4.3 UNIT-STEP RESPONSE ANALYSIS 350
11.4.4 IMPULSE RESPONSE ANALYSIS 351
11.5 AC motor drives 351
11.5.1 AC MOTOR SUPPLIED BY A CHOPPER 351
11.5.2 AC MOTOR SUPPLIED BY A DC/AC INVERTER OR AC/AC CONVERTER 352
11.5.3 VARIABLE-SPEED AC MOTOR DRIVE SYSTEM SUPPLIED BY A FOH 353
11.6 DC motor drives 355
11.6.1 DC MOTOR SUPPLIED BY A CHOPPER 355
11.6.2 DC MOTOR SUPPLIED BY AN AC/DC RECTIFIER 356
11.6.3 VARIABLE-SPEED DC PM MOTOR DRIVE SYSTEM SUPPLIED BY A SOH 357
REFERENCES 360
12. Applications in Other Branches of Power Electronics 361
12.1 Introduction 361
12.2 Power systems analysis 362
12.3 Power factor correction 362
12.3.1 OPERATING PRINCIPLES 364
12.3.2 MATHEMATICAL MODEL DERIVATION 365
Averaged Model over One Switching Period T[sub(S)] 366
Averaged Model over One Half Line Period T[sub(L)] 368
12.3.3 MODEL VALIDATION 371
12.3.4 SIMULATION RESULTS 372
12.3.5 EXPERIMENTAL RESULTS 372
12.3.6 CONTROLLER DESIGN 373
12.4 Static compensation (STATCOM) 376
12.4.1 SYSTEM CONFIGURATION 377
Configuration of STATCOM System 377
Three-Phase 9-Level Trinary Hybrid Multilevel Inverter 378
Counts of GTOs 382
Series Connection of GTOs 383
Device Power Loss and the Cost of Cooling Systems 383
Cost of DC Capacitors 387
12.4.2 CONTROL SYSTEM OF THE STATCOM 389
Vector Representation and Transformation of Instantaneous Three-Phase Quantities 390
Power Control Module 391
Unbalanced Voltage Control Module 394
Inverter Control Modules 395
12.4.3 SIMULATION RESULTS 402
12.4.4 EXPERIMENTAL RESULTS 406
12.4.5 SUMMARY 410
FURTHER READING 412
Index 414
A 414
B 414
C 414
D 415
E 416
F 416
G 416
H 416
I 416
J 417
K 417
L 417
M 417
N 417
O 418
P 418
Q 418
R 418
S 419
T 420
U 420
V 420
W 421
Y 421
Z 421

Erscheint lt. Verlag 20.7.2010
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Technik Elektrotechnik / Energietechnik
ISBN-10 0-08-045902-1 / 0080459021
ISBN-13 978-0-08-045902-8 / 9780080459028
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 65,45