Advances in Atomic, Molecular, and Optical Physics (eBook)
464 Seiten
Elsevier Science (Verlag)
978-0-08-056143-1 (ISBN)
Advances in Atomic, Molecular, and Optical Physics, established in 1965, continues its tradition of excellence with Volume 32, published in honor of Founding Editor Sir David Bates upon his retirement as editorof the series. This volume presents reviews of topics related to the applications of atomic and molecular physics to atmospheric physics and astrophysics.
Front Cover 1
Advances in Atomic, Molecular, and Optical Physics, Volume 32 4
Copyright Page 5
Contents 8
Contributors 14
Preface 16
A Further Appreciation 18
Chapter 1. Photoionisation of Atomic Oxygen and Atomic Nitrogen 20
I. Introductory Remarks 20
II. Photoionisation of Atomic Oxygen 21
III. Photoionisation of Atomic Nitrogen 29
IV. Conclusion 35
References 36
Chapter 2. Positronium Formation by Positron Impact on Atoms at Intermediate Energies 38
I. Introduction 38
II. Coupled Channel Equations 40
III. Perturbation and Distorted Wave Models 48
IV. Conclusions 54
References 54
Chapter 3. Electron–Atom Scattering Theory and Calculations 58
I. Introduction 58
II. Scattering at Low Energies 59
III. Scattering at Intermediate and High Energies 63
IV. Illustrative Results 68
V. Conclusions 71
Acknowledgments 72
References 73
Chapter 4. Terrestrial and Extraterrestrial H3+ 76
I. Introduction 76
II. Terrestrial H3+ 77
III. Extraterrestrial H3+ 79
Acknowledgments 85
References 85
Chapter 5. Indirect Ionization of Positive Atomic Ions 88
I. Introduction 88
II. Ionization Processes 90
III. Experimental Approaches 91
IV. Some Experimental Results 93
References 110
Chapter 6. Quantum Defect Theory and Analysis of High-Precision Helium Term Energies 112
I. Introduction 112
II. Quantum Defect Theory and 1/n Expansions 114
III. Quantum Defect Analysis of High-Precision Variational Calculations 122
IV. Comparison with High-Precision Measurements 129
V. Summary and Discussion 132
Acknowledgments 134
References 134
Chapter 7. Electron–Ion and Ion–Ion Recombination Processes 136
I. Introduction 136
II. Historical Interlude 137
III. Capture-Stabilized Theory as a Basis for Future Discussion 139
IV. Electron–Ion Recombination Processes 143
V. Ion–Ion Recombination Processes 154
VI. Conclusions 163
Acknowledgments 164
References 164
Chapter 8. Studies of State-Selective Electron Capture in Atomic Hydrogen by Translational Energy Spectroscopy 168
I. Introduction 168
II. Experimental Approach 170
III. Results 173
IV. Conclusions 185
Acknowledgments 186
References 186
Chapter 9. Relativistic Electronic Structure of Atoms and Molecules 188
I. Introduction 188
II. The Beginnings of Relativistic Electronic Structure Theory 189
III. Open-Shell Atoms 194
IV. Basis Sets and QED of Atoms and Molecules 198
V. Outlook 202
Acknowledgments 203
References 203
Chapter 10. The Chemistry of Stellar Environments 206
I. Introduction 206
II. Winds from Young Stellar Objects 207
III. Circumstellar Envelopes of Asymptotic Giant Branch Stars 210
IV. Planetary Nebulae and Preplanetary Nebulae 214
V. Novae 216
VI. Chemistry in Supernovae Ejecta: Molecules in SN1987A 218
VII. Conclusions 222
References 223
Chapter 11. Positron and Positronium Scattering at Low Energies 224
I. Introduction 224
II. Positron Scattering by Atoms 226
III. Positronium Scattering by Atoms and Charged Particles 232
IV. Positron Scattering by Molecular Hydrogen 236
V. Concluding Remarks 239
Acknowledgments 239
References 240
Chapter 12. How Perfect Are Complete Atomic Collision Experiments? 242
I. Introduction 242
II. Electron–Atom Collisions 244
III. Approaches to "Complete" Experiments in Heavy-Particle Atom Collisions and Photoionisation of Atoms 263
IV. Concluding Remarks 267
References 267
Chapter 13. Adiabatic Expansions and Nonadiabatic Effects 272
I. Introduction 272
II. Quantum Mechanical Approach 274
III. Semiclassical Formalism 283
IV. Some Experimental Evidence 288
V. Relevant Work of D. R. Bates (1962–1983) 290
VI. Understanding Nonadiabatic Transitions and Effects (1971–1992) 291
VII. Conclusions 293
Acknowledgments 294
References 294
Chapter 14. Electron Capture to the Continuum 298
I. Introduction 298
II. Relativistic Theory of Electron Capture to the Continuum 299
III. Cusp Asymmetry for Electron Yield 303
IV. Nonrelativistic Formulas for Electron Capture to the Continuum 304
V. Comparisons with Experimental Data and Other Theories 305
References 311
Chapter 15. How Opaque Is a Star? 314
I. What Is Opacity? 315
II. What Is White? 316
III. Ultraviolet Radiation from Hot Stars 317
IV. Opacities for Stellar Interiors 320
References 324
Chapter 16. Studies of Electron Attachment at Thermal Energies Using the Flowing Afterglow–angmuir Probe Technique 326
I. Introduction 327
II. Basic Attachment Processes at Low Energies 328
III. Theoretical Description of Electron Attachment 331
IV. Some Experimental Techniques Used to Study Electron Attachment 332
V. The Flowing Afterglow-Langmuir Probe Technique 335
VI. Results from the FALP Experiments Comparisons with Results from Other Experiments
VII. Recent Developments Using the FALP Apparatus 354
VIII. Concluding Remarks 359
Acknowledgments 360
References 361
Chapter 17. Exact and Approximate Rate Equations in Atom-Field Interactions 364
I. Introduction 364
II. Basic Features of the REA the Two-Level Atom
III. Generalization to N Atomic Levels 375
IV. Extensions of the REA 381
V. Rate Equations in the Dressed-Atom Picture 387
VI. Summary 390
Acknowledgments 391
VII. Appendix: Derivation of the Exact Rate Equations 392
References 395
Chapter 18. Atoms in Cavities and Traps 398
I. Introduction 398
II. Review of the One-Atom Maser 399
III. Dynamics of a Single Atom 402
IV. A Source of Nonclassical Light 404
V. A New Probe of Complementarity—The One-Atom Maser and Atomic Interferometry 408
VI. Experiments with Ion Traps 410
VII. Order versus Chaos: Crystal versus Cloud 412
VIII. The Ion Storage Ring 416
IX. Ordered Structures in the Storage Ring and Comparison with the Theory 418
References 423
Chapter 19. Some Recent Advances in Electron-Impact Excitation of n = 3 States of Atomic Hydrogen and Helium 426
I. Introduction 426
II. The Basic Theory 430
III. Coincidence Measurements 434
IV. Radiation Trapping 437
Acknowledgments 443
References 444
Index 446
Contents of volumes in this serial 456
Erscheint lt. Verlag | 4.1.1994 |
---|---|
Mitarbeit |
Herausgeber (Serie): Benjamin Bederson, Alexander Dalgarno |
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber |
Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik | |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Technik | |
ISBN-10 | 0-08-056143-8 / 0080561438 |
ISBN-13 | 978-0-08-056143-1 / 9780080561431 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich