Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Blood Substitutes -  Robert M. Winslow

Blood Substitutes (eBook)

eBook Download: PDF
2005 | 1. Auflage
576 Seiten
Elsevier Science (Verlag)
978-0-08-045414-6 (ISBN)
Systemvoraussetzungen
230,77 inkl. MwSt
(CHF 225,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Blood substitutes are solutions designed for use in patients who need blood transfusions, but for whom whole blood is not available, or is not safe. This interest has intensified in the wake of the AIDS and hepatitis C epidemics. Blood Substitutes describes the rationale, current approaches, clinical efficacy, and design issues for all blood substitutes now in clinical trials. The many summary diagrams and tables help make the book accessible to readers such as surgeons and blood bankers, who have less technical expertise than the biochemists and hematologists who are designing and testing blood substitutes.* Includes chapters necessary to the understanding of blood substitutes, including history, toxicity, physiology, and clinical applications* Presents detailed descriptions of the various products that have been developed and have advanced to clinical trials, and some that are in earlier states of development

Professor Winslow received his M.D. degree and postgraduate training in internal medicine and hematology at the Johns Hopkins University and Hospital. He studied hemoglobin biochemistry at the Massachusetts Institute of Technology and Molecular Biology at the National Institutes of Health. His research, for more than 30 years, has been aimed at the intersection of the synthesis, structure and function of hemoglobin, in such areas as sickle cell anemia, high altitude physiology and hemoglobin-based oxygen carriers. Professor Winslow previously headed the Blood Research Division at the Letterman Army Institute of Research, responsible for the US Army's blood substitute program. Between 1991 and 1998, he was a Professor of Medicine, leading a blood substitute program at the University of California at San Diego (UCSD), supported by the National Institutes of Health. Professor Winslow has also served as a consultant to many private companies and has been an advisor for, among others, the Federal Aviation Administration (FAA), Food and Drug Administration (FDA), the Institute of Medicine of the National Academy of Science, the Pan American Health Organization, the National Institutes of Health, the Department of Defense and a number of foreign governments. He has written more than 200 scientific articles on clinical, physiological and biochemical aspects of hemoglobin and oxygen transport.
Blood substitutes are solutions designed for use in patients who need blood transfusions, but for whom whole blood is not available, or is not safe. This interest has intensified in the wake of the AIDS and hepatitis C epidemics. Blood Substitutes describes the rationale, current approaches, clinical efficacy, and design issues for all blood substitutes now in clinical trials. The many summary diagrams and tables help make the book accessible to readers such as surgeons and blood bankers, who have less technical expertise than the biochemists and hematologists who are designing and testing blood substitutes.* Includes chapters necessary to the understanding of blood substitutes, including history, toxicity, physiology, and clinical applications* Presents detailed descriptions of the various products that have been developed and have advanced to clinical trials, and some that are in earlier states of development

Cover 1
Blood Substitutes 4
Contents 6
List of contributors 10
Preface 14
Acknowledgements 16
Abbreviations 18
Introduction 22
Section 1: Background 24
1 Historical Background 26
INTRODUCTION 26
BLOOD CIRCULATION AND TRANSFUSION 26
WORLD WAR II 28
FIRST ‘BLOOD SUBSTITUTES’ 29
Milk 29
Normal saline 30
Ringer’s solution 30
Gum saline 30
BLOOD PLASMA, SERUM AND ALBUMIN 30
Perfluorocarbons 31
CELL-FREE HEMOGLOBIN 32
Modified hemoglobin 33
Encapsulated hemoglobin 34
Synthetic heme 34
CURRENT STATUS 34
SUMMARY 34
REFERENCES 35
2 Transfusion Medicine 38
HISTORY OF BLOOD TRANSFUSION 38
ORGANIZATION OF BLOOD SERVICES 39
AVAILABILITY OF BLOOD 40
The blood donor 40
Frequency of donors in the population 40
Blood utilization and shortages 40
The shrinking donor pool: the safety vs. availability balance 41
RED BLOOD CELL COMPONENTS 41
Whole blood and red blood cells 41
RED CELL COMPATIBILITY 43
UNIVERSAL RED CELLS 44
RED CELL MODIFICATION 44
Other considerations 44
ADVERSE EVENTS ASSOCIATED WITH RED CELL TRANSFUSION 47
Disease transmission 47
Other adverse events 48
IMMUNOMODULATORY EFFECTS 49
THE COST OF RED CELLS 50
THE ROLE OF RED CELL SUBSTITUTES 51
REFERENCES 52
3 Regulatory Perspectives on Clinical Trials for Oxygen Therapeutics in Trauma and Transfusion Practice 55
GENERAL REGULATORY BACKGROUND IN THE UNITED STATES 55
CONSIDERATIONS FOR CLINICAL TRIALS IN TRAUMA 57
CONSIDERATIONS IN TRANSFUSION AVOIDANCE 59
SUMMARY 60
REFERENCES 61
Section 2: Physiological Basis 64
4 Clinical Physiology: Oxygen Transport and the Transfusion Trigger 66
INTRODUCTION 66
OXYGEN REQUIREMENTS 66
LOCAL REGULATION OF OXYGEN SUPPLY: THE MICROCIRCULATION 68
OXYGEN UPTAKE IN THE LUNG 69
THE ‘OPTIMAL’ HEMATOCRIT 70
OXYGEN DELIVERY, OXYGEN UPTAKE AND THE ‘CRITICAL OXYGEN’ 70
BLOOD TRANSFUSION AND OXYGEN SUPPLY 71
Acute blood loss (shock) 71
Chronic anemia 72
Hemodilution 72
THE ‘TRANSFUSION TRIGGER’ 73
Clinical transfusion triggers 74
Physiological transfusion triggers 75
Hematocrit/hemoglobin concentration 75
Mixed venous PO[sub(2)] 75
Oxygen consumption (VO[sub(2)]) 75
Oxygen extraction ratio 76
Hemodynamic instability 76
Blood loss 76
Symptoms 77
Other signs of ischemia 77
Individualized transfusion triggers 77
REFERENCES 78
5 The Role of Oxygen and Hemoglobin Diffusion in Oxygen Transport by Cell-Free Hemoglobins 81
INTRODUCTION 81
OXYGEN DIFFUSION AND ITS BARRIERS IN THE CIRCULATION 82
Physical chemistry of diffusion 82
Oxygen diffusion in vivo 83
FACILITATED DIFFUSION OF OXYGEN BY OXYHEMOGLOBIN 83
Facilitated diffusion of cell-free hemoglobin 84
RATE LIMITING STEPS OF IN VIVO GAS EXCHANGE 85
FACILITATED OXYGEN TRANSPORT AND VASOCONSTRICTION 86
FACILITATED DIFFUSION AND HYPEROXYGENATION OF ARTERIOLES 87
SUMMARY 89
REFERENCES 90
6 Oxygen Transport Properties of Hemoglobin-Based Oxygen Carriers: Studies Using Artificial Capillaries and Mathematical Simulation 93
INTRODUCTION 93
IN VITRO SIMULATION OF OXYGEN TRANSPORT 93
Mathematical simulation of oxygen transport 93
Flow regimes 94
CURRENT STATE OF OXYGEN CARRIER STUDIES IN ARTIFICIAL CAPILLARIES 95
CURRENT STATE OF MATHEMATICAL SIMULATION STUDIES 96
Capillaries of 25 & #956
Capillaries of 4 & #956
EXAMPLES OF EXPERIMENTS AND SIMULATIONS 97
Capillaries of 25 & #956
Capillaries of 10 & #956
Capillaries of 57 & #956
Capillaries of 4 & #956
IMPLICATIONS FOR IN VIVO OXYGEN TRANSPORT 100
SUMMARY 102
REFERENCES 104
7 Mechanisms of Oxygen Transport in the Microcirculation: Effects of Cell-Free Oxygen Carriers 105
INTRODUCTION 105
THE DISTRIBUTION OF OXYGEN IN THE CIRCULATION 106
OXYGEN DELIVERY AND CONSUMPTION 106
ANEMIA AND HYPEROXIA 108
THE HEMOGLOBIN – OXYGEN EQUILIBRIUM CURVE 108
TISSUE RESPIRATION 110
SUMMARY 112
ACKNOWLEDGMENTS 113
REFERENCES 113
8 Shear Stress, Mechanotransduction and the Flow Properties of Blood 114
INTRODUCTION 114
SHEAR STRESS AND THE RELEASE OF VASOACTIVE MEDIATORS 115
MECHANOTRANSDUCTION AND MECHANOSENSORS 115
THE ROLE OF THE GLYCOCALYX 116
CHANGES OF SHEAR STRESS IN THE MICROCIRCULATION 117
EFFECTS IN THE PLASMA LAYER 118
BLOOD SUBSTITUTES AND MECHANOTRANSDUCTION 119
ACKNOWLEDGMENTS 120
REFERENCES 120
9 Local Regulation of Blood Flow 123
INTRODUCTION 123
TISSUE OXYGEN SUPPLY AND DEMAND 124
CELLULAR METABOLIC FEEDBACK 127
OXYGEN-SENSITIVE MECHANISMS 128
MECHANISMS OF FUNCTIONAL HYPEREMIA 128
MECHANICAL STIMULI FOR FLOW REGULATION 129
INTEGRATIVE ASPECTS OF FLOW REGULATION 129
ACKNOWLEDGMENTS 131
REFERENCES 131
Section 3: Clinical Applications 134
10 Clinical Indications for Blood Substitutes and Optimal Properties 136
INTRODUCTION 136
TRAUMA/RESUSCITATION 136
ELECTIVE SURGERY 138
RED CELL INCOMPATIBILITY 139
ISCHEMIC DISEASE AND ANGIOPLASTY 139
EXTRACORPOREAL ORGAN PERFUSION 139
CELL CULTURE MEDIA 139
HEMATOPOIETIC STIMULATION 139
CARDIOPLEGIA 140
SICKLE-CELL ANEMIA 140
TUMOR THERAPY 141
CHRONIC ANEMIA 141
RESEARCH 141
REQUIREMENTS FOR A BLOOD SUBSTITUTE 141
Oxygen capacity 142
Oxygen affinity 142
Viscosity 142
Plasma retention 143
Colloid osmotic pressure 143
Storage stability 143
REFERENCES 144
11 Crystalloid Solutions 147
INTRODUCTION 147
PHYSIOLOGICAL PRINCIPLES 148
DISTRIBUTION VOLUMES OF WATER, SODIUM AND PROTEIN 148
KINETIC DISTRIBUTION VOLUMES OF FLUIDS 149
CRYSTALLOID SOLUTIONS 152
USE OF CRYSTALLOID FLUIDS IN SURGICAL PROCEDURES 153
USE OF CRYSTALLOID FLUIDS FOR REPLACEMENT OF BLOOD LOSS 154
OTHER EFFECTS OF CRYSTALLOID INFUSION 154
SUMMARY 156
REFERENCES 156
12 Hemoglobin-Based Oxygen Carriers as Resuscitative Solutions for Trauma 160
INTRODUCTION 160
REQUIREMENTS FOR COMBAT CASUALTY CARE 160
RELEVANT PROPERTIES OF HBOCs FOR TRAUMA AND COMBAT CASUALTY CARE 162
INTRAOPERATIVE TRIALS 163
PRE-HOSPITAL RESUSCITATION 164
PLASMA VOLUME EXPANSION 164
CARDIAC OUTPUT 165
OXYGEN UPTAKE VERSUS OXYGEN DELIVERY 167
HYPOTENSIVE RESUSCITATION 167
NEW FORMULATIONS 168
Conjugated hemoglobins 168
Hypertonic saline–HBOC combinations 169
SUMMARY 169
REFERENCES 170
13 Surgical Hemorrhage 173
INTRODUCTION 173
POTENTIAL CLINICAL BENEFITS OF HBOCs IN SURGICAL CARE 173
POTENTIAL ROLE OF HBOCs IN SURGICAL CARE 174
EXCEPTION FROM INFORMED CONSENT FOR TRAUMA TRIALS 175
CLINICAL EVALUATION OF TETRAMERIC HEMOGLOBIN IN TRAUMA 176
CLINICAL SAFETY OF POLYHEME™ IN TRAUMA 177
CLINICAL EFFICACY OF POLYHEME TRAUMA CARE 178
Reduction of allogeneic RBC transfusions 178
RBC non-availability: acute hemorrhagic shock 180
THE NEXT GENERATION OF HBOCs FOR SURGICAL CARE 181
ACKNOWLEDGMENTS 182
REFERENCES 182
14 Clinical Trials in Cardiac Surgery 184
INTRODUCTION 184
HEMOGLOBIN SOLUTIONS 184
Diaspirin crosslinked hemoglobin (DCLHb) in cardiac surgery 184
PolyBvHb (HBOC-201) 185
o-Raffinose polymerized hemoglobin 186
PERFLUOROCARBON EMULSIONS 186
SUMMARY 187
REFERENCES 188
15 Hemodilution 190
INTRODUCTION 190
MECHANISMS OF ADAPTATION TO REDUCED HEMOGLOBIN 190
Viscosity-dependent increase in cardiac output 190
Myocardial perfusion and contractility 191
Oxygen extraction response 191
MICROCIRCULATORY CHANGES AND TISSUE OXYGENATION 192
Microcirculatory adaption to ANH 192
TISSUE OXYGENATION 193
BRAIN FUNCTION IN DILUTIONAL ANEMIA 194
PLASMA VISCOSITY 194
EXTREME HEMODILUTION 194
HYPEROXIC HEMODILUTION 195
SUMMARY 196
REFERENCES 196
16 Clinical Hemodilution 199
INTRODUCTION 199
INDICATIONS FOR ACUTE NORMOVOLEMIC HEMODILUTION 200
PHYSIOLOGICAL COMPENSATORY MECHANISMS 201
Cardiac output 201
Tissue oxygenation 201
HEMODILUTION PROCEDURES 201
Calculation of blood volume withdrawal 201
Practical aspects of hemodilution 201
Technique of preoperative hemodilution 202
Monitoring 202
EFFICACY OF HEMODILUTION 204
ADJUNCTS TO ANH 204
Erythropoietin (EPO) 204
Hyperoxia 205
Hypervolemia 205
Blood substitutes 205
SUMMARY 205
REFERENCES 206
17 Potential for Blood Substitutes in Tissue Ischemia 209
INTRODUCTION 209
PERIPHERAL ARTERIAL OCCLUSIVE DISEASE 209
Rest pain 209
Ulcers and gangrene 210
TREATMENT AVAILABLE FOR CHRONIC CRITICAL LEG ISCHEMIA 211
General management 211
Increase transmural pressure 211
Improve the local microcirculation 212
Other treatments 213
Amputation 213
POTENTIAL FOR BLOOD SUBSTITUTES IN THE TREATMENT OF CCLI 213
Theoretical possibilities 213
Improving functional capillary density 213
SUMMARY 214
REFERENCES 215
Section 4: Toxicity and Side Effects 216
18 Redox and Radical Reactions of Hemoglobin Solutions: Toxicities and Protective Strategies 218
INTRODUCTION 218
OXIDATIVE MECHANISMS 219
HEMOGLOBIN AND CELL-SIGNALING PATHWAYS 221
HIF-1& #945
HIF-1& #945
ANTIOXIDATIVE PROTECTIVE STRATEGIES 222
SUMMARY 224
REFERENCES 225
19 Pro-Oxidant Activity of Hemoglobin and Endothelial Cytotoxicity 227
INTRODUCTION 227
PRO-OXIDANT ACTIVITY OF HEMOGLOBIN 228
Heme moiety of hemoglobin 228
Redox cycling reactions 228
Other pro-oxidant mechanisms of hemoglobin 229
HEMOGLOBIN-MEDIATED ENDOTHELIAL CYTOTOXICITY IN VITRO 230
Heme- and ferryl Hb-induced cytotoxicity 230
Redox cycling of hemoglobin enhances lipopolysaccharide-induced cytotoxicity 232
PRO-OXIDANT ACTIVITY OF HEMOGLOBIN AND VASCULAR TOXICITY IN VIVO 233
REFERENCES 234
SUMMARY 234
20 Renal Toxicity 238
INTRODUCTION 238
HISTORY AND BACKGROUND 238
CURRENT STATE OF KNOWLEDGE 239
Renal hemoglobin transport and toxicity for tubular cells 239
Heme oxygenases 239
Histopathology 240
HEMOGLOBIN TOXICITY TO RENAL VASCULATURE 240
Extravasation 240
Hemoglobin effects on vascular function 241
FUNCTIONAL CONSEQUENCES OF HEMOGLOBIN TOXICITY 241
Acute toxicity 241
Chronic renal hemoglobin toxicity 241
ACUTE RENAL FAILURE 242
Classification of human acute renal failure 242
Preconditioning 242
Animal models of acute tubular necrosis (renal failure) 243
SUMMARY 243
FUTURE DIRECTIONS 244
Animal models of acute and chronic toxicity 244
Clinical trials 244
REFERENCES 245
21 Hemoglobin and Neurotoxicity 248
INTRODUCTION 248
IN VITRO EXPERIMENTS 248
IN VIVO EXPERIMENTS 250
TISSUE RESPONSE TO HEMOGLOBIN METABOLITES AND POSSIBLE NEUROPROTECTION 250
CLINICAL EXPERIENCE WITH HBOCs 252
REFERENCES 254
22 The Role of Inflammation in the Toxicity of Hemoglobin-Based Oxygen Carriers 256
INTRODUCTION 256
THE INFLAMMATORY RESPONSE 256
Cellular responses 256
Cytokines 257
Complement 257
BLOOD VESSELS 257
Reactive oxygen species 257
The intestinal mucosa 258
BLOOD SUBSTITUTES AND INFLAMMATION 258
Mast cells 258
Eosinophils 259
Complement 260
MICROVESSELS AND INTESTINAL MUCOSA 261
CLINICAL IMPLICATIONS OF INFLAMMATION DURING USE OF BLOOD SUBSTITUTES 262
ANTICIPATED FUTURE DIRECTIONS 262
SUMMARY 263
REFERENCES 264
23 Hemoglobin-Induced Myocardial Lesions 267
INTRODUCTION 267
BACKGROUND 267
ANIMAL MODELS 268
LESION CHARACTERISTICS 269
MECHANISM OF HEMOGLOBIN-INDUCED MYOCARDIAL LESIONS 271
Contaminants 271
Effect of a foreign protein 272
Heme 272
CO-MEDICAMENTS 272
Administration protocol 272
Chemical modification 273
Role of nitric oxide 273
SUMMARY 274
ACKNOWLEDGEMENTS 275
REFERENCES 275
Section 5: Perfluorocarbon-Based Oxygen Carriers 278
24 Fluorocarbon Emulsions as in vivo Oxygen Delivery Systems: Background and Chemistry 280
FLUOROCARBON CHEMISTRY 280
Unique chemicals 280
Stable and inert 281
Hydrophobic and lipophobic 281
OXYGEN DISSOLVING AND DELIVERING CAPACITY: GAS-LIKE LIQUIDS 282
PERFLUOROCARBON EMULSIONS FOR IN VIVOOXYGEN TRANSPORT 283
Optimal perfluorocarbons for clinical emulsions 283
Synthesis of PFCS 286
Optimal emulsifiers 287
Production of small, stable emulsion particles 287
Stability: counteracting molecular diffusion and coalescence 288
DEVELOPMENT OF INJECTABLE FLUOROCARBON EMULSIONS 289
Fluosol-DA related emulsions 289
Oxygent™ 290
Oxyfluor 290
Miscellaneous emulsions 291
THE SEARCH FOR IMPROVED EMULSIONS 291
Fluorocarbon–hydrocarbon diblockstabilized emulsions 291
Phase-shift emulsions 292
Further research on fluorocarbon emulsions and applications 292
REFERENCES 294
25 Fluosol: The First Commercial Injectable Perfluorocarbon Oxygen Carrier 297
INTRODUCTION 297
ORIGINS OF FLUOSOL 297
CHEMISTRY, COMPOSITION AND PRODUCTION 298
PRECLINICAL STUDIES 299
CLINICAL TRIALS 299
Studies in Japan 299
Studies in North America 300
FAILURE OF REGULATORY APPROVAL OF FLUOSOL FOR THE TREATMENT OF ANEMIA 301
PERCUTANEOUS TRANSLUMINAL CORONARY ANGIOPLASTY 301
What is angioplasty? 301
Benefits of Fluosol in angioplasty: animal and clinical studies 302
Regulatory approval of Fluosol for clinical use as adjunct to angioplasty 302
OTHER APPLICATIONS FOR FLUOSOL 303
LESSONS LEARNED FROM FLUOSOL 304
Merits 304
Shortcomings 304
OTHER ‘FIRST-GENERATION’ EMULSIONS 304
REFERENCES 305
26 Perftoran® 309
INTRODUCTION 309
HISTORY AND COMPOSITION OF PERFTORAN 309
PRECLINICAL STUDIES 310
CLINICAL TRIALS WITH PERFTORAN 312
CURRENT USAGE OF PERFTORAN 312
CLINICAL IMPLICATIONS 314
THE FUTURE OF PERFTORAN 315
SUMMARY 315
ACKNOWLEDGMENTS 316
REFERENCES 316
27 Rational Development of Oxyfluor™ 319
INTRODUCTION 319
EVOLUTION OF PERFLUOROCARBONS FOR OXYGEN TRANSPORT 320
Leland Clark 320
Green Cross and Fluosol® 320
HemaGen and Oxyfluor™ 321
DEVELOPMENT OF OXYFLUOR™ 321
The emulsification system 321
The perfluorochemical 323
OXYFLUOR REGULATORY STATUS 326
THE FUTURE OF OXYFLUOR AND HEMAGEN 329
REFERENCES 331
28 Oxygent™, A Perfluorochemical-Based Oxygen Therapeutic for Surgical Patients 333
INTRODUCTION 333
EMULSION CHARACTERISTICS 333
NON-CLINICAL SAFETY 334
CLINICAL SAFETY 334
PRECLINICAL EFFICACY 335
POTENTIAL CLINICAL APPLICATIONS 335
Tissue oxygenation and hemodilution 335
Cardiopulmonary bypass 336
Shock and trauma 336
Decompression sickness 337
Organ preservation 337
Tumor oxygenation 337
Sickle cell disease 337
PHASE II CLINICAL STUDIES 337
General surgery 337
Cardiac surgery 338
PHASE III CLINICAL STUDIES 338
General surgery 338
Cardiac surgery 339
FUTURE CLINICAL DEVELOPMENT 341
ACKNOWLEDGMENTS 342
REFERENCES 342
Section 6: Hemoglobin-Based Oxygen Carriers 346
29 The Structural and Functional Properties of Hemoglobin and their Relevance for a Hemoglobin-Based Blood Substitute 348
INTRODUCTION 348
THE STRUCTURE OF HEMOGLOBIN 349
DERIVATIVES WITH HEME LIGANDS 349
SUBUNIT INTERFACES AND TETRAMER–DIMER DISSOCIATION 350
COOPERATIVE OXYGEN BINDING 350
Structural basis of cooperativity 353
Models of cooperativity 354
STEREOCHEMICAL CONSEQUENCES OF LIGAND BINDING 354
CONTROL OF OXYGEN AFFINITY 355
NON-HEME LIGANDS: H[sup(+)], Cl[sup(-)], CO[sub(2)] AND 2,3-DPG 356
NITRIC OXIDE 357
AUTOXIDATION 359
ACKNOWLEDGMENTS 360
REFERENCES 360
30 Hemoglobin Modification 362
INTRODUCTION 362
REACTIVITY OF HEMOGLOBIN 363
AMINO-TERMINAL MODIFICATION 364
Carbamylation 364
Carboxymethylation 364
Acetaldehyde 364
MODIFICATION AT THE 2,3-DPG BINDING SITE 364
Pyridoxal derivatives 364
lysine EF6(82)& #946
2-Nor-2-formylpyridoxal 5'-phosphate 365
Other 2,3-DPG pocket crosslinkers 366
& #945
SURFACE, MULTISITE POLYMERIZING REAGENTS 367
Glutaraldehyde 367
Other polyaldehydes 368
Diimidate esters 368
‘Zero-link’ polymers 368
CONJUGATED HEMOGLOBIN 368
RECOMBINANT HEMOGLOBIN 369
HEMOGLOBIN SOURCES 369
REFERENCES 371
31 Designing Recombinant Hemoglobin 375
INTRODUCTION 375
GENETICALLY CROSSLINKED HEMOGLOBIN 375
OXYGEN DELIVERY 376
THE HYPERTENSIVE SIDE EFFECT 378
NO DIOXYGENATION BY OXYHEMOGLOBIN 382
EXPRESSION OF rHB IN E.COLI 383
Apoglobin stability and expression 383
Hemoglobin assembly 385
Comparative mutagenesis of apoHb 386
Alpha hemoglobin stabilizing protein (AHSP) 386
Heterologous heme transport genes 387
SUMMARY 389
ACKNOWLEDGMENTS 390
REFERENCES 390
32 Design, Conformational, Functional and Physiological Characterization of Recombinant Polymeric Heme-Proteins 396
INTRODUCTION 396
DESIGN OF RECOMBINANT HEME PROTEIN POLYMERS 397
Homogeneous polymers 397
Heterogeneous polymers 398
BIOCHEMICAL PROPERTIES 399
Heme affinity and autoxidation rate 399
Stability 399
Oxygen affinity 400
Nitric oxide affinity 400
PHYSIOLOGICAL PROPERTIES 401
Plasma retention time 401
Exchange transfusion 401
Focal cerebral ischemia 402
ENDOTHELIAL PERMEABILITY (EXTRAVASATION) 402
SUMMARY 404
ACKNOWLEDGMENTS 405
REFERENCES 405
33 & #945
THE NEED FOR A BLOOD SUBSTITUTE 407
PRODUCTION 409
CHARACTERIZATION 409
PHARMACOKINETICS 411
VASOCONSTRICTION 412
HEMODYNAMICS 413
MICROCIRCULATION 413
ENDOTHELIUM 414
OXYGEN TRANSPORT 415
OXIDATION 415
CENTRAL NERVOUS SYSTEM 415
REFERENCES 416
34 DCLHb and rHb1.1 420
‘TETRAMERIC’ MODIFIED HEMOGLOBINS 420
DCLHb 421
Composition 421
Manufacture 422
Physicochemical characteristics of DCLHb 424
Product history 425
RECOMBINANT HEMOGLOBINS 426
Composition and nomenclature 426
Manufacture 426
Product history 428
RETROSPECTIVE 430
Conflict of Interest statement 432
REFERENCES 432
35 Clinical Studies with DCLHb 436
INTRODUCTION 436
PRECLINICAL CARDIAC LESIONS 436
PHASE I STUDY 437
PHASE II STUDIES 437
Hemorrhagic shock study: first entry into patients 437
Low-dose surgery studies 438
Hemodialysis 438
Intensive care unit studies 439
PHASE III STUDIES 439
Cardiac surgery: the pivotal efficacy study 439
Pancreatitis 440
EUROPEAN PRODUCT APPLICATION FOR CARDIAC SURGERY 440
TRAUMA STUDIES: THE BEGINNING OF THE END 441
Stroke study 442
THE END OF DCLHb 442
LESSONS LEARNED 442
REFERENCES 443
36 Hemopure® (HBOC-201, Hemoglobin Glutamer-250 (Bovine)): Preclinical Studies 445
INTRODUCTION 445
PRODUCT CHARACTERISTICS 445
PHARMACOLOGICAL ACTION 446
PRECLINICAL STUDIES OF TISSUE OXYGENATION AND TRAUMA 448
Tissue oxygenation 448
Tumor oxygenation 449
Trauma, hemorrhage and/or shock 450
Controlled hemorrhage models 450
Uncontrolled hemorrhage models 450
Model of lethal whole body trauma 451
Hypotensive resuscitation 451
Brain oxygenation during hemorrhagic shock 452
CARDIOVASCULAR STUDIES 453
HEMODILUTION AND COMPLETE BLOOD REPLACEMENT 453
CARDIAC FUNCTION, OUTPUT AND METABOLISM 453
POTENTIAL INDICATIONS FOR HBOC-201 455
Extracorporeal membrane oxygenation 455
SUMMARY 455
REFERENCES 456
37 HBOC-201 (Hemoglobin Glutamer-250 (Bovine), Hemopure®): Clinical Studies 458
INTRODUCTION 458
PHASE I STUDIES IN HUMAN VOLUNTEERS 458
PHASE I/II STUDIES 461
Liver resection 463
Sickle cell disease 463
PHASE II STUDIES 463
Cardiac surgery 464
Abdominal aortic surgery 464
PHASE III STUDY 465
Orthopedic surgery 465
OTHER POPULATIONS AND CASE STUDIES 465
Abdominal aneurysm 465
Intraoperative myocardial ischemia 466
Autoimmune hemolytic anemia 466
HBOC-201 interference with clinical laboratory analyses 466
SUMMARY 467
REFERENCES 470
38 Polyhemoglobin-Enzymes as New-Generation Blood Substitutes and Oxygen Therapeutics 472
INTRODUCTION 472
POLYHEMOGLOBIN–CATALASE–SUPEROXIDE DISMUTASE 472
POLYHEMOGLOBIN–TYROSINASE 476
SUMMARY 479
REFERENCES 479
39 Surface Decoration of Hemoglobin with Polyethylene Glycol 481
PROTEIN MODIFICATION WITH PEG 481
HEMOGLOBIN MODIFICATION WITH PEG 481
Conjugation of hemoglobin with PEG chains 482
VASOACTIVITY OF PEG-MODIFIED HEMOGLOBIN 483
NEW PARADIGMS FOR THE DESIGN OF HEMOGLOBIN-BASED BLOOD SUBSTITUTES 483
Critical properties revisited 483
Validation of the new strategies 484
NEW PEG CHEMISTRY STRATEGIES 484
Thiolation-mediated maleimide chemistry 484
Structural and functional properties of Hb-PEG5K6 485
Vasoactivity of Hb-PEG5K6 486
Flexibility of the thiolation-mediated maleimide chemistry-based PEGylation protocol 487
MODIFICATION NEEDED TO NEUTRALIZE VASOACTIVITY 487
MOLECULAR SHIELDING BY PEG MODIFICATION 487
SUMMARY 488
ACKNOWLEDGMENTS 489
REFERENCES 489
40 Hemospan® (MP4), A Human Hemoglobin Modified with Maleimide-Polyethylene Glycol 491
INTRODUCTION 491
THE AUTOREGULATORY HYPOTHESIS 491
CHEMISTRY AND PHYSICAL PROPERTIES 492
Synthesis of MP4 492
Structure and physical properties of MalPEG-hemoglobin 493
Functional properties of MP4 494
NON-CLINICAL STUDIES 494
Fifty per cent controlled hemorrhage and resuscitation in pigs 494
Forty per cent hemorrhage and resuscitation followed by severe hemorrhage in pigs 495
Uncontrolled hemorrhage and resuscitation in pigs 496
Continuous exchange transfusion in rats 496
Microvascular response to hemodilution in Golden Syrian hamsters 496
Hemorrhage/resuscitation in rats 497
Pharmacokinetics and metabolism in animals 497
In vivooxidation 498
TOXICOLOGY/SAFETY 498
Acute and subacute toxicology 498
Central nervous system toxicity 499
Myocardial histology following 30 per cent blood volume exchange in primates 499
CLINICAL LABORATORY INTERFERENCE 499
CLINICAL INDICATIONS 500
Hemodynamic stabilization 500
Blood replacement after hemorrhage 500
Tissue oxygenation 500
CLINICAL TRIALS 500
SUMMARY 501
REFERENCES 502
41 Dextran–Hemoglobin 504
INTRODUCTION 504
HIGH YIELD OF DxHB 505
PROTECTION OF KIDNEYS 505
NON-ENTRY INTO LYMPH 505
OXYGEN AFFINITY 506
PHYSICAL STABILITY 506
IN VIVO STUDIES 506
Exchange transfusion 506
Hemorrhagic shock 506
POTENTIAL FOR DxHb 506
REFERENCES 507
42 Development of Non-Extravasating Hemoglobin-Based Oxygen Carriers 509
INTRODUCTION 509
FUMARYL-CROSSLINKED BOVINE HEMOGLOBIN 509
SEBACYL-CROSSLINKED TETRAMERIC HEMOGLOBIN (DECA) 510
ADIPYL-CROSSLINKED BOVINE HEMOGLOBIN 513
ZERO-LINK POLYMERIC HEMOGLOBIN 513
OXYGEN DELIVERY BY HIGH AND LOW AFFINITY CARRIERS 516
SUMMARY 516
ACKNOWLEDGMENTS 517
REFERENCES 517
Section 7: Liposomes and Related Products 520
43 Liposome-Encapsulated Hemoglobin: History, Preparation and Evaluation 522
HISTORICAL PERSPECTIVE 522
PREPARATION OF LIPOSOMEENCAPSULATED HEMOGLOBIN 523
Lipid composition and charge 523
Particle size 524
Hemoglobin source 525
PEGylation of LEH 525
PROPERTIES 525
Oxygen affinity 525
Viscosity 526
Colloid oncotic pressure and isotonicity 526
ENDOTOXIN INTERACTION 526
CIRCULATION TIME 527
TOXICITY 528
OXYGEN DELIVERY 528
STORAGE STABILITY 529
SUMMARY 530
ACKNOWLEDGMENTS 530
REFERENCES 530
44 Hemoglobin Vesicles as a Molecular Assembly: Characteristics of Preparation Process and Performances as Artificial Oxygen Carriers 535
IMPORTANCE OF CELLULAR STRUCTURE 535
PREPARATION OF HEMOGLOBIN VESICLES 536
Virus inactivation and removal during hemoglobin purification 536
Encapsulation of concentrated Hb in HbV 537
REGULATION OF OXYGEN AFFINITY 538
STORAGE STABILITY 538
ENDOTOXIN 539
HEMOGLOBIN VESICLES AS OXYGEN CARRIERS IN VIVO 540
SUMMARY 540
ACKNOWLEDGMENTS 541
REFERENCES 541
45 Nanodimension Biodegradable Polymeric Membrane Artificial Red Blood Cells 544
INTRODUCTION 544
PROPERTIES OF HEMOGLOBIN POLYLACTIDE NANOCAPSULES 545
Particle size 545
Oxygen affinity, Hill coefficient and Bohr effect 545
Circulation half-life of hemoglobin nanocapsules 546
PEG-PLA COPOLYMER Hb NANOCAPSULES 547
Effects of molecular weight distribution of polyHb used in the PEG-PLA nanocapsules 547
Effects of higher concentrations of PEG-PLA (polyethelene-glyco-polylactide) copolymer combined with polyHb(17 : 1) 547
Effects of higher molecular weight PLA for the PEG-PLA copolymer 548
Higher PEG-PLA concentration combined with higher molecular weight PLA 548
Effect of crosslinking the newly formed Hb nanocapsules 548
Effects of combination of all four factors to prepare Hb nanocapsules 548
Analysis of results 548
ENZYMES AND MULTIENZYMES 549
PREVENTION OF METHEMOGLOBIN FORMATION 549
Hb nanocapsules containing metHb reductase system 549
Hb nanocapsules permeable to reducing factors from plasma 550
Other red blood cell enzymes 551
IMPLICATIONS FOR BLOOD SUBSTITUTE DEVELOPMENT 551
ACKNOWLEDGMENTS 551
REFERENCES 551
46 Albumin-Heme: A Synthetic Heme-Based Oxygen Carrier 553
INTRODUCTION 553
RATIONALE FOR ALBUMIN-HEME 553
OXYGEN BINDING AND PHYSICOCHEMICAL CHARACTERISTICS 555
BLOOD COMPATIBILITY IN VITRO 555
IN VIVO EFFECTS 555
Blood pressure effects 555
Hemodilution 556
PRECLINICAL SAFETY 556
FUTURE RESEARCH 558
ACKNOWLEDGMENTS 559
REFERENCES 559
Index 562
A 562
B 562
C 563
D 563
E 564
F 564
G 564
H 564
I 566
J 566
K 566
L 566
M 567
N 567
O 567
P 568
R 568
S 569
T 569
U 569
V 569
W 569
Z 569
Color Plates 570

List of Contributors


Seetharama A. Acharya     (39), Albert Einstein Univ. School of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA

Paul Aebersold     (3), Division of Blood Applications, Center for Biologics Evaluation and Research, FDA, Rockville, MD, USA

Abdu I. Alayash     (18), Center for Biologics Evaluation and Research – NIH Campus, FDA, Bethesda, MD, USA

Vibhu Awasthi     (43), University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

Andrew D. Baines     (20), Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada

Ann L. Baldwin     (22), Department of Physiology – College of Medicine, University of Arizona, Tucson, AZ, USA

Andrea Bellelli     (29), Dipartimento di Scienze Biochimiche, Universita ‘La Sapienza’, Rome, Italy

Jan Blumenstein     (41), Dextro-Sang Corporation, Toronto, Canada

Liudmila A. Bogdanova     (26), The Institute of Theoretical and Experimental Biophysics of RAS, Pushchino, Moscow Region, Russia

William S. Brinigar     (32), Department of Chemistry, Temple University, Philadelphia, PA, USA

Maurizio Brunori     (29), Dipartimento di Scienze Biochimiche, Universita ‘La Sapienza’, Rome, Italy

Enrico Bucci     (42), Biochemistry and Molecular Biology, University of Maryland Medical School, Baltimore, MD, USA

Kenneth E. Burhop     (23), Medication Delivery, Baxter Healthcare Corporation, Deerfield, IL, USA

Pedro Cabrales     (7, 8), Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA

Thomas Ming Swi Chang     (38, 45), Faculty of Medicine, McGill University, Montreal, Quebec, Canada

Keith W. Chapman     (40), Sangart Inc., and Department of Bioengineering, University of California, San Diego, California, USA.

Pierre-Guy Chassot     (14), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland

Felice D’Agnillo     (19), Division of Hematology, Center for Biologics, Evaluation and Research Food and Drug Administration, NIH Campus, Bethesda, MD, USA

Randal O. Dull     (32), Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA

Barbara L. Ellington     (21), Department of Neurosurgery, University of California San Francisco and San Francisco Veterans Affairs Hospital, San Francisco, CA, USA

Bengt Fagrell     (17), Department of Medicine, Karolinska Sjukhuset, Stockholm, Sweden

John A. Frangos     (8), La Jolla Bioengineering Institute, La Jolla, CA, USA

Clara Fronticelli     (32), Anesthesiology and CCM, Johns Hopkins University, Baltimore, MD, USA

Maria S. Gawryl     (36, 37), Research and Development, Biopure Corporation, Cambridge, MA, USA

Elizabeth A. Goins     (43), Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA

J. David Hellums     (6), Department of Bioengineering, Rice University, Houston, TX, USA

Hirohisa Horinouchi     (46), Department of General Thoracic Surgery, School of Medicine, Keio University, Tokyo, Japan

Yubin Huang     (46), Advanced Research Institute for Science and Engineering, Waseda University, Tokyo, Japan

Marcos Intaglietta     (7, 8), Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA

Bahram I. Islamov     (26), The Institute of Theoretical and Experimental Biophysics of RAS, Pushchino, Moscow Region, Russia

Henrikh R. Ivanitsky     (26), The Institute of Theoretical and Experimental Biophysics of RAS, Pushchino, Moscow Region, Russia

Paul C. Johnson     (9), Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA

Natalia B. Karmen     (26), The Institute of Theoretical and Experimental Biophysics of RAS, Pushchino, Moscow Region, Russia

Peter E. Keipert     (28), Sangart Inc., Sorrento Valley, San Diego, CA, USA

Gregor Kemming     (15, 16), Clinic of Anesthesiology and Institute for Surgical Research, Ludwig-Maximilian-University, Munich, Germany

Harvey G. Klein     (2), Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, USA

Koichi Kobayashi     (44, 46), Department of Surgery, School of Medicine, Keio University,Tokyo, Japan

Raymond C. Koehler     (21, 32, 42), Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA

Teruyuki Komatsu     (46), Advanced Research Institute for Science and Engineering, Waseda University, Tokyo, Japan

Marie Pierre Krafft     (24), Colloïdes et Interfaces, Institut Charles Sadron, Strasbourg, France

George C. Kramer     (12), Department of Anesthesiology and Physiology, University of Texas Medical Branch, Galveston, TX, USA

Herman Kwansa     (42), Department of Biochemistry and Molecular Biology, University of Maryland Medical School, Baltimore, MD,USA

Laurence Landow     (3), Division of Blood Applications, Center for Biologics Evaluation and Research, FDA, Rockville, MD, USA

Kimberly Lindsey     (3), Division of Blood Applications, Center for Biologics Evaluation and Research, FDA, Rockville, MD, USA

Kenneth C. Lowe     (25), Department of Life Science, University of Nottingham – School of Biological Sciences, Nottingham, England, UK

Eugene I. Maevsky     (26), Thermodynamics and Energetics of Biological Systems, Institute of Theoretical and Experimental Biophysics of RAS, Pushkino, Moscow Region, Russia

David H. Maillett     (31), Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA

Belur N. Manjula     (39), Departments of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA

Igor A. Maslennikov     (26), The Scientific-Productive Company ‘Perftoran’, Pushchino, Moscow Region, Russia

Barbara Matheson     (42), Department of Biomedical Science, University of Maryland Dental School, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA

Konrad Messmer     (15, 16), Institute for Surgical Research, University of Munich, Munich,...

Erscheint lt. Verlag 5.10.2005
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizinische Fachgebiete Innere Medizin Hämatologie
Studium 1. Studienabschnitt (Vorklinik) Physiologie
Naturwissenschaften Biologie Humanbiologie
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-08-045414-3 / 0080454143
ISBN-13 978-0-08-045414-6 / 9780080454146
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von James D. Brierley; Hisao Asamura; Elizabeth Van Eycken …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
CHF 82,95