Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Long Wave Polar Modes in Semiconductor Heterostructures -

Long Wave Polar Modes in Semiconductor Heterostructures (eBook)

eBook Download: PDF
1998 | 1. Auflage
164 Seiten
Elsevier Science (Verlag)
978-0-08-053560-9 (ISBN)
Systemvoraussetzungen
161,12 inkl. MwSt
(CHF 157,40)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Long Wave Polar Modes in Semiconductor Heterostructures is concerned with the study of polar optical modes in semiconductor heterostructures from a phenomenological approach and aims to simplify the model of lattice dynamics calculations. The book provides useful tools for performing calculations relevant to anyone who might be interested in practical applications.

The main focus of Long Wave Polar Modes in Semiconductor Heterostructures is planar heterostructures (quantum wells or barriers, superlattices, double barrier structures etc) but there is also discussion on the growing field of quantum wires and dots. Also to allow anyone reading the book to apply the techniques discussed for planar heterostructures, the scope has been widened to include cylindrical and spherical geometries.

The book is intended as an introductory text which guides the reader through basic questions and expands to cover state-of-the-art professional topics. The book is relevant to experimentalists wanting an instructive presentation of a simple phenomenological model and theoretical tools to work with and also to young theoreticians by providing discussion of basic issues and the basis of advanced theoretical formulations. The book also provides a brief respite on the physics of piezoelectric waves as a coupling to polar optical modes.


Long Wave Polar Modes in Semiconductor Heterostructures is concerned with the study of polar optical modes in semiconductor heterostructures from a phenomenological approach and aims to simplify the model of lattice dynamics calculations. The book provides useful tools for performing calculations relevant to anyone who might be interested in practical applications. The main focus of Long Wave Polar Modes in Semiconductor Heterostructures is planar heterostructures (quantum wells or barriers, superlattices, double barrier structures etc) but there is also discussion on the growing field of quantum wires and dots. Also to allow anyone reading the book to apply the techniques discussed for planar heterostructures, the scope has been widened to include cylindrical and spherical geometries. The book is intended as an introductory text which guides the reader through basic questions and expands to cover state-of-the-art professional topics. The book is relevant to experimentalists wanting an instructive presentation of a simple phenomenological model and theoretical tools to work with and also to young theoreticians by providing discussion of basic issues and the basis of advanced theoretical formulations. The book also provides a brief respite on the physics of piezoelectric waves as a coupling to polar optical modes.

Front Cover 1
Long wave polar modes in semiconductor heterostructures 4
Copyright Page 5
Contents 6
Preface 8
List of symbols 12
Chapter 1. Phonons in bulk crystals 16
Chapter 2. The long wave limit (bulk). Continuum approach 28
Chapter 3. Polar optical modes in heterostructures 36
Chapter 4. Surface Green Function Matching 66
Chapter 5. Polar optical modes in layered structures 98
Chapter 6. Quasi-lD semiconductor nanostructures 138
Chapter 7. Quasi-OD semiconductor nanostructures 160
Index 178

Chapter One

Phonons in bulk crystals


We start with a very brief reminder of the main basic concepts in the theory of lattice dynamics in bulk crystals. This subject is of course abundantly — and well — covered in numerous texts of various kinds [16]. Here we shall simply introduce in an organised manner the notation to be followed and the basic elements — often simply the symbols and notation — to be used later.

Since simple systems usually illustrate the features of real systems, we start with a brief summary of linear chains and after that we collect the phonon dispersion and parameters of the semiconductors we shall mostly deal with, i.e. GaAs and AlAs and their ternary compounds.

Linear lattices


Monoatomic linear chain


We begin with the case of a linear lattice with N equidistant atoms of mass M and period a, interacting with an harmonic potential U and a nearest neighbour force constant γ0 and look only at longitudinal vibrations. Then the atomic displacements in the normal mode k are

n=Akei(kna−ωt)

  (1.1)

with corresponding eigenvalue

=2γ0M|sin⁡(ka/2)|.

  (1.2)

Let us define the collective coordinates Ak

n=1N∑kAkeikna

  (1.3)

with inverse relation

k=1N∑kξne−ikna.

  (1.4)

The requirement ξn = real then implies that k*=A−k. In these coordinates the phonon Hamiltonian takes the form of N decoupled oscillators. For each oscillator we can introduce the operators ^k and ^k† and then

^=∑kh¯ω(k)(b^k†b^k+12),

  (1.5)

b^k,b^k′ ]=0;[ b^k†,b^k′† ]=0;[ b^k,b^k′† ]=δkk′.

  (1.6)

If |0,0,…, νk,…, 0,0 > is the state with νk phonons in mode k, then

^k|νk>=νk|νk−1>,b^k†|νk>=νk+1|νk+1>,n^k=b^k†b^k,n^k|νk>=νk|νk>,E0=12∑kh¯ω(k),E=E0+∑kνkh¯ω(k).

  (1.7)

Diatomic linear chain


We recall the well-known fact that a linear monoatomic chain with period a can also be formally described as having a period 2a, 3a, etc. The dispersion relation curve ω(k) is then folded in a smaller Brillouin Zone (BZ) and the flatness property ∂ω/∂k|BZ border = 0 no longer holds. If we modify the system in some way so that the fictitious period becomes real, then some gaps appear at the Brillouin Zone border of the initially folded representation and the flatness property reappears. With a view to the eventual treatment of the superlattices it is appropriate to look here in this way at the passage from the monoatomic to the diatomic chain, so we now consider the case of two different atoms (masses Mα, α = 1, 2) in the unit cell interacting with nearest neighbour force constant γ0. For simplicity we assume the atoms to be equidistant so that b = 2a is now the real period. In terms of collective coordinates Ak we now have

n,α=1NMα∑kAkeα(k)eiknb,

α(−k)=eα(k);Ak*=A−k,

  (1.8)

where Ak is the amplitude of the wave and eα(k) is the polarisation vector (one-component vector in this 1D case) for α atom.

Then the Lagrangian is given by [1]

=12∑k,αeα2(k)A˜kA˜−k−12∑k,α,βDαβ(k)eα(k)eβ(k)AkA−k

  (1.9)

with

11=2γ0/M1;D12=−γ0/M1M2(1+eikb)D21=D12*=D12(−k);D22=2γ0/M2

  (1.10)

and the Lagrange equations are

α(k)A¨k+∑βDαβ(k)Ak=0;α=1,2.

  (1.11)

These and Äk = − ω2Ak, yield the dispersion relations

s2(k)=γ0[ 1μ+(−1)s1μ2−4M1M2sin⁡2(kb2) ],s=1,2,

  (1.12)

where μ is the reduced mass given by

=M1M2M1+M2.

  (1.13)

For ka << 1

1(k)≈kb22γ0M1+M2=vsk;ω2(k)≈2γ0μ

  (1.14)

where υs is the speed of sound. At the Brillouin Zone border

1(π/a)=2γ0Mmax;ω2(π/a)=2γ0Mmin,

  (1.15)

with

max=Max{M1,M2};Mmin=Min{M1,M2},

  (1.16)

and the displacements of the atoms in the unit cell are related by

ξn2ξn1)k,s=e2s(k)e1s(k)M2M1,e2s(k)e1s(k)=2γ0M1−ωs2(k)2γ0/M1M2.

  (1.17)

In the above equations ω1 represents the acoustical branch, and ω2 the optical branch.

In terms of phonon creation and annihilation operators

^=∑k,sh¯ωs(k)[ b^ks†b^ks+12 ],

  (1.18)

^nα(s)=h¯2NMα∑k,seαs(k)ωs(k)(b^ks+b^ks†)eikna.

  (1.19)

Qualitatively similar results are obtained when we treat the case of two — different or equal — nonequidistant atoms in the unit cell.

In these systems we have 2N degrees of freedom and 2N second order coupled ordinary differential equations, N being the number of unit cells. The introduction of collective coordinates allows us to solve the problem with a system of 2N/N = 2 algebraic equations.

In the acoustic branch ω tends to zero when k → 0, and then in the long-wavelength limit

n2ξn1≈1.

  (1.20)

On the other hand, for the optical branch and ≈0,ω2γ0/μ and

n2ξn1≈−M1M2.

  (1.21)

The standard use of the Born-von Karman conditions to count the number of states yields again a total number of modes equal to the number of atoms in the Born-von Karman ring, but now there are two branches in correspondence with the number of atoms in the unit cell and a gap between the two. If we take p cells as a fictitious period then the dispersion relation scheme is folded p times and we loose the flatness property in the neighbourhood of the Brillouin Zone border. Again, if the system is modified so the fictitious period becomes real, then the property is recovered and some gaps open at the Γ and X points of the Brillouin Zone.

General comments on linear lattices


We have examined simply longitudinal modes in linear chains of atoms with only nearest neighbour interactions, which suffices to set the scene and bear out the main qualitative features. For the diatomic chain we have assumed equidistant atoms with only a mass difference. Again, a re-examination of this problem with some changes — e.g. equal or different atoms but with a nearest neighbour spacing ab/2 — does not change the key qualitative features and if we recover the monoatomic chain by making all atoms and/or interatomic distances equal, then we obtain one branch but artificially folded.

The consideration of p atoms of the same or different classes distributed in the unit cell interacting with an arbitrary number of neighbours implies quantitative changes in the dispersion relation curves and normal modes. But the general picture is still valid, i.e. the states are labelled by the ID wavevector k spanning the first Brillouin Zone, the number of branches (in one dimension) agrees with the number of atoms in the unit cell, the number of states in a branch is determined by the number of unit cells in the crystal (Born-von Karman or periodic boundary condition), there is always an acoustic branch with frequency tending to zero in the long-wavelength limit, and there are p − 1 optical branches in the upper side of the spectrum.

In particular if we consider the linear diatomic chain and we call...

Erscheint lt. Verlag 21.5.1998
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-053560-7 / 0080535607
ISBN-13 978-0-08-053560-9 / 9780080535609
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Theoretische Physik II

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
CHF 47,85
Theoretische Physik II

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
CHF 47,85