Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Materials Science in Microelectronics I -  Eugene Machlin

Materials Science in Microelectronics I (eBook)

The Relationships Between Thin Film Processing and Structure
eBook Download: PDF
2010 | 2. Auflage
270 Seiten
Elsevier Science (Verlag)
978-0-08-045960-8 (ISBN)
Systemvoraussetzungen
186,23 inkl. MwSt
(CHF 179,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.

The first volume of Materials Science in Microelectronics focuses on the first relationship - that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer - determines the ultimate structure of the thin film, and thus its properties. This volume takes into consideration the following potential influencing factors: crystal defects, void structure, grain structure, interface structure in epitaxial films, the structure of amorphous films, and reaction-induced structure.

An ideal text or reference work for students and researchers in material science, who need to learn the basics of thin films.
Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.The first volume of Materials Science in Microelectronics focuses on the first relationship - that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer - determines the ultimate structure of the thin film, and thus its properties. This volume takes into consideration the following potential influencing factors: crystal defects, void structure, grain structure, interface structure in epitaxial films, the structure of amorphous films, and reaction-induced structure.An ideal text or reference work for students and researchers in material science, who need to learn the basics of thin films.

Cover 1
Materials Science in Microelectronics, Volume 1 4
Contents 6
Acknowledgement 12
Foreword 14
Preface 16
Preface to revised edition 18
Chapter I Deposition Parameters 20
1. Identification of deposition parameters that may affect thin film structure 20
2. Discussion of vapor deposition parameters 21
2.1. Background pressure of chamber and purity of precursors 21
2.2. Line-of-sight travel of incident particles 23
2.3. Incident particle energy 23
2.3.1. Temperature spike 24
2.3.1.1. Induced by bonding alone of non-energetic particle 24
2.3.1.1.1. Temperature spike in film 24
2.3.1.1.2. Temperature spike in cluster on thermally insulating substrate 26
2.3.1.2. Induced by energetic incident particle 26
2.3.2. Penetration of surface by incident particle 27
2.3.3. Displacement spike 29
2.3.4. Momentum or pressure spike 31
2.4. Incident particle flux 33
2.5. Substrate and its cleanliness 34
2.6. Substrate temperature 35
2.7. Composition of deposit relative to target 36
2.8. Target 37
3. Deposition parameters for other than PVD 37
4. Summary 38
References 39
Appendix 1 39
Appendix 2 40
Chapter II Defect Structure 42
1. Intercolumn (interfiber) “void” networks 42
1.1. Summary of observations concerning intercolumn “void” networks 42
1.2. Origin of intercolumn “void” networks 42
1.3. Effect of processing on void and column structure 50
1.4. Temperature, T[sub(1)], delineating transition between presence and absence of “void" networks 55
1.5. Crystalline versus amorphous structure in zone 1 56
1.5.1. Crystalline films 56
1.5.2. Amorphous films 57
1.6. Instability of “void” network 58
1.7. Deposition methods that eliminate the formation of “void” networks 58
1.7.1. Deposition processes involving energetic incident particles 59
2. Other defects introduced during deposition at low substrate temperature 62
2.1. Point defects 62
2.1.1. Vacancies and interstitials 62
2.1.2. Impurity atoms 64
2.1.3. Point defects in amorphous films 65
2.2. Line defects – dislocations 65
2.3. Grain boundaries and stacking faults 66
2.4. Three-dimensional defects 67
3. Summary of the relations between deposition methods and defect structures 67
References 68
Appendix 1 70
Appendix 2 71
Appendix 3 72
Chapter III Grain Structure 74
1. Materials science background 74
2. Grain morphology, texture, and size in as-deposited films 77
2.1. Vapor deposition onto epitaxial substrates in the absence of incident energetic particles 77
2.2. Vapor deposition onto non-epitaxial substrates in the absence of incident energetic particles 79
2.2.1. No grain boundary mobility, no adatom mobility (zone 1a) 79
2.2.2. Some grain boundary mobility, some adatom mobility (zone 1b) 81
2.2.3. Rapid grain boundary migration, rapid adatom diffusion 89
2.2.4. Very rapid grain boundary migration, very rapid adatom diffusion 91
2.2.5. Zone models of grain morphology for vapor deposition in chamber pressures greater than 10[sup(– 8)] Torr onto non-epitaxial substrates 92
2.2.6. Interpretation of zone models according to present analysis 94
2.3. Effect of anisotropic sticking coefficient 96
2.4. Polycrystalline semiconductors on non-epitaxial substrates 96
2.5. Conclusions regarding grain morphology, size and texture produced via vapor deposition in the absence of energetic particles 97
3. Grain morphology, texture and size in vapor-deposited films which sense energetic (hyperthermal) particles during deposition 98
3.1. Deposition onto epitaxial substrates 100
3.2. Deposition onto non-epitaxial substrates 100
3.2.1. Zone 1aT temperature range 101
3.2.2. Zone 1bT temperature deposition 102
3.2.3. Zone II deposition 105
3.3. Summary of results on the effects of energetic particle bombardment during deposition 107
4. Effects of post-deposition processing on grain structure 108
4.1. Effect of post-deposition annealing 108
4.2. Post-deposition bombardment at elevated temperature 109
References 109
Appendix 1 111
Appendix 2 112
Appendix 3 113
Appendix 4 113
Appendix 5 113
Chapter IV Epitaxial Structures 116
1. Modes of growth in production of epilayers 117
1.1. Modes of growth 117
1.2. Modes of F–M epilayer growth 118
2. Defects produced in homoepitaxial layers 121
2.1. Point defects and their clusters 121
2.2. Line and planar defects 123
3. Defects in pseudomorphic films 127
3.1. Coherent (commensurate) pseudomorphic films 127
3.1.1. Interfacial defects 128
3.1.2. Defects in pseudomorphic solid solutions 129
3.2. Pseudomorphically stabilized metastable crystal structures 133
3.3. Commensurate–discommensurate transition and misfit dislocations 135
4. Heteroepitaxy between crystals of different symmetry, bonding class or of large misfit 140
4.1. Metal/metal epilayer/substrate systems 141
4.2. Metal/semiconductor epilayer/substrate systems 143
4.3. Epitaxy at vicinal surfaces 144
4.4. Theories of interphase interfaces 147
4.5. Constraints on epitaxy due to symmetry 148
5. Graphoepitaxy 148
6. Epilogue 151
References 151
Appendix 1 156
Appendix 2 157
Chapter V Structure of Amorphous Films 160
1. Amorphous covalently bonded semiconductors 160
1.1. Non-hydrogenated and hydrogenated Group IV elements 160
1.1.1. & #945
1.1.2. & #945
1.1.3. & #945
1.2. Amorphous semiconductor alloys and compounds 178
1.2.1. & #945
1.2.2. Chalcogenides 179
2. Amorphous metals and alloys 179
3. Amorphous oxides 181
3.1. Amorphous silicon oxide 181
3.2. High dielectric constant amorphous oxides 182
4. Amorphous & #8596
References 184
Appendix 188
Chapter VI Stresses in Thin Films 192
1. Intrinsic stress 192
1.1. Non-energetic deposition 192
1.1.1. Zone a temperatures (nil mobility) 192
1.1.2. Zone b temperatures 197
1.1.2.1. Origin of compressive stress 199
1.1.3. Effect of variables other than substrate temperature 200
1.1.3.1. Oxygen 200
1.1.3.2. Other impurities 201
1.2. Intrinsic stress when film surface senses energetic particles 201
1.3. Intrinsic stress due to phase transformation 207
1.4. Intrinsic stress due to epitaxy 210
2. Thermal stress 211
References 211
Appendix 1 212
Chapter VII Reaction-induced Structure 214
1. Heterogeneous reactions between thin monocrystalline layers 214
1.1. Completely miscible layers 214
2. Layers of immiscible components but forming intermediate compounds 215
2.1. Epitaxial monocrystalline product phase 215
2.2. Polycrystalline compound products 219
3. Reactions between adatoms and substrate 220
3.1. Silicon dioxide films 220
4. Amorphous to crystalline transitions 223
4.1. Silicon 223
4.1.1. & #945
4.1.2. & #945
4.1.3. Solid phase epitaxy via diffusion through an intermediate phase 230
4.1.4. Amorphous & #8596
4.2. Carbon 238
4.2.1. Deposition of carbon films using ion beams 238
4.2.2. Possible solid phase epitaxy of diamond 241
4.3. Amorphous to crystalline transition in other materials 242
4.3.1. Amorphous to poly-transition 242
4.3.2. Amorphous to epitaxial silicide transition 244
4.4. Summary of section 4 245
References 245
Appendix 1 248
Appendix 2 249
Appendix 3 250
Appendix 4 250
Chapter VIII Surface Structure 252
1. Surface roughness 252
2. Surface modification for producing ordered arrays 255
2.1. Periodic surface reconstruction pattern 255
2.2. Periodic surface strain pattern 256
2.3. Periodic ledge pattern 261
2.4. Periodic surface phase pattern 262
2.5. Periodic nanodots via kinetic control 263
3. Processing and surface reconstruction 266
References 267
Index 270
A 270
B 270
C 270
D 271
E 271
F 272
G 272
H 272
I 272
K 272
L 273
M 273
N 273
O 273
P 273
R 273
S 273
T 274
U 275
V 275
W 275
Y 275
Z 275

Erscheint lt. Verlag 7.7.2010
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-045960-9 / 0080459609
ISBN-13 978-0-08-045960-8 / 9780080459608
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 65,45