Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Data Driven Approaches for Healthcare - Chengliang Yang, Chris Delcher, Elizabeth Shenkman, Sanjay Ranka

Data Driven Approaches for Healthcare

Machine learning for Identifying High Utilizers
Buch | Hardcover
118 Seiten
2019
Chapman & Hall/CRC (Verlag)
978-0-367-34290-6 (ISBN)
CHF 259,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges posed by this problem.
Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.

Key Features:

Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codes
Provides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizers
Presents descriptive data driven methods for the high utilizer population
Identifies a best-fitting linear and tree-based regression model to account for patients’ acute and chronic condition loads and demographic characteristics

Chengliang Yang, Department of Computer Science, University of Florida Chris Delcher, Institute of Child Health Policy, University of Florida Elizabeth Shenkman, Institute of Child Health Policy, University of Florida Sanjay Ranka, Department of Computer Science, University of Florida.

Introduction. Overview of Healthcare Data. Machine Learning Modeling from Healthcare Data. Machine Learning Modeling from Healthcare Data. Descriptive Analysis of High Utlizers. Residuals Analysis for Identifying High Utilizers.Machine Learning Results for High Utilizers.

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Big Data Series
Zusatzinfo 25 Halftones, black and white
Sprache englisch
Maße 178 x 254 mm
Gewicht 850 g
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Theorie / Studium
Recht / Steuern Privatrecht / Bürgerliches Recht IT-Recht
ISBN-10 0-367-34290-1 / 0367342901
ISBN-13 978-0-367-34290-6 / 9780367342906
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Grundkurs für Ausbildung und Praxis

von Ralf Adams

Buch (2023)
Carl Hanser (Verlag)
CHF 41,95
Einführung in die Praxis der Datenbankentwicklung für Ausbildung, …

von René Steiner

Buch | Softcover (2021)
Springer Fachmedien Wiesbaden GmbH (Verlag)
CHF 69,95