Actuarial Theory for Dependent Risks (eBook)
458 Seiten
John Wiley & Sons (Verlag)
978-0-470-01644-2 (ISBN)
seen a growing interest amongst actuaries in the modelling of
dependent risks. For efficient risk management, actuaries need to
be able to answer fundamental questions such as: Is the correlation
structure dangerous? And, if yes, to what extent? Therefore tools
to quantify, compare, and model the strength of dependence between
different risks are vital. Combining coverage of stochastic order
and risk measure theories with the basics of risk management and
stochastic dependence, this book provides an essential guide to
managing modern financial risk.
* Describes how to model risks in incomplete markets, emphasising
insurance risks.
* Explains how to measure and compare the danger of risks, model
their interactions, and measure the strength of their
association.
* Examines the type of dependence induced by GLM-based credibility
models, the bounds on functions of dependent risks, and
probabilistic distances between actuarial models.
* Detailed presentation of risk measures, stochastic orderings,
copula models, dependence concepts and dependence orderings.
* Includes numerous exercises allowing a cementing of the concepts
by all levels of readers.
* Solutions to tasks as well as further examples and exercises can
be found on a supporting website.
An invaluable reference for both academics and practitioners alike,
Actuarial Theory for Dependent Risks will appeal to all those eager
to master the up-to-date modelling tools for dependent risks. The
inclusion of exercises and practical examples makes the book
suitable for advanced courses on risk management in incomplete
markets. Traders looking for practical advice on insurance markets
will also find much of interest.
Michel Denuit - Michel Denuit is Professor of Statistics and Actuarial Science at the Université catholique de Louvain, Belgium. His major fields of research are risk theory and stochastic inequalities. He (co-)authored numerous articles appeared in applied and theoretical journals and served as member of the editorial board for several journals (including Insurance: Mathematics and Economics). He is a section editor on Wiley's Encyclopedia of Actuarial Science. Jan Dhaene, Faculty of Economics and Applied Economics KULeuven, Belgium. Marc Goovaerts, Professor of Actuarial Science (Non-life Insurance) at University of Amsterdam (The Netherlands) and Catholique University of Leuven (Belgium) Rob Kaas, Professor of Actuarial Science (Actuarial Statistics), U. Amsterdam, The Netherlands.
Foreword.
Preface.
PART I: THE CONCEPT OF RISKS.
1. Modelling Risks.
1.1 Introduction.
1.2 The Probabilitsic Description of Risks.
1.3 Indepenance for Events and Conditional Probabilities.
1.4 Random Variables and Vectors.
1.5 Distribution Functions.
1.6 Mathematical Expectation.
1.7 Transforms.
1.8 Conditional Ditsributions.
1.9 Comonotonicity.
1.10 Mutual Exclusivity.
1.11 Exercises.
2. Measuring Risk.
2.1 Introduction.
2.2 Risk Measures.
2.3 Value-at-Risk.
2.4 Tail Value-at-Risk.
2.5 Risk MEasures Based on Expected Utility Theory.
2.6 Risk Measures Based on Distorted Expectation Theory.
2.7 Exercises.
2.8 Appendix: Convexity and Concavity.
3. Comparing Risks.
3.1 Introduction.
3.2 Stochastic Order Relations.
3.3 Stochastic Dominance.
3.4 Convex and Stop-Loss Orders.
3.5 Exercises.
PART II: DEPENDANCE BETWEEN RISKS.
4. Modelling Dependence.
4.1 Introduction.
4.2 Sklar's Representation Theorem.
4.3 Families of Bivariate Copulas.
4.4 Properties of Copulas.
4.5 The Archimedean Family of Cpoulas.
4.6 Simulation from Given Marginals and Copula.
4.7 Multivariate Copulas.
4.8 Loss-Alae Modelling with Archimedean Copulas: A CaseStudy.
4.9 Exercises.
5. Measuring Depenence.
5.1 Introduction.
5.2 Concordance Measures.
5.3 Dependence Structures.
5.4 Exercises.
6. Comparing Depe6.1 Introduction.
6.2 Comparing in the Bivariate Case Using the CorrelationOrder.
6.3 Comparing Dependence in the Multivariate Case Using theSupermodular Order.
6.4 Positive Orthant Depenedence Order.
6.5 Exercises.
PART III: APPLICATIONS TO INSURANCE MATHEMATICS.
7. Depenedence in Credibility Models Based on Generalized LinearModels.
7.1 Introduction.
7.2 Poisson Static Credibility for Claim Frequencies.
7.3 More Results for the Static Credibility Model.
7.4 More Results for the Dynamic Credibility Models.
7.5 On the Depenedence Induced By Bonus-Malus Scales.
7.6 Credibility Theory and Time Series for Non-Normal Data.
7.7 Exercises.
8. Stochastic Bounds on Functions of Dependent Risks.
8.1 Introduction.
8.2 Comparing Risks with Fixed Depoenedence Structure.
8.3 Stop-Loss Bounds on Functions of Dependent Risks.
8.4 Stochastic Bounds on Functions of Dependent Risks.
8.5 Some Financial Applications.
8.6 Exercises.
9. Integral Orderings and Probability Metrics.
9.1 Introduction.
9.2 Integral Stochastic Oredrings.
9.3 Integral Probability Metrics.
9.4 Total-Variation Distance.
9.5 Kolmogorov Distance.
9.6 Wasserstein Distance.
9.7 Stop-Loss Distance.
9.8 Integrated Stop-Loss Distance.
9.9 Distance Between the Individual and Collective Models inRisk Theory.
9.10 Compound Poisson Approximation for a Portfolio of DependentRisks.
9.11 Exercises.
References.
Index.
Erscheint lt. Verlag | 1.5.2006 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Recht / Steuern ► Wirtschaftsrecht | |
Betriebswirtschaft / Management ► Spezielle Betriebswirtschaftslehre ► Versicherungsbetriebslehre | |
Schlagworte | Accounting • Business & Finance • Economics • Finanzmathematik • Finanz- u. Wirtschaftsstatistik • Mathematics • Mathematik • Mathematik in Wirtschaft u. Finanzwesen • Rechnungswesen • Statistics • Statistics for Finance, Business & Economics • Statistik • Versicherungsmathematik • Volkswirtschaftslehre |
ISBN-10 | 0-470-01644-2 / 0470016442 |
ISBN-13 | 978-0-470-01644-2 / 9780470016442 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich