Applying Power Series to Differential Equations
Springer International Publishing (Verlag)
978-3-031-24589-3 (ISBN)
James Sochacki is a Professor Emeritus and Director of the Center for Computational Mathematics and Modeling at James Madison University, USA. Dr. Sochacki holds a PhD in Applied Mathematics (1985) and a Master´s degree (1981) from the University of Wyoming, USA. His research interests lie in initial value ordinary and partial differential equations.
Anthony Tongen is a Professor and Vice Provost, Office of Research and Scholarship, at James Madison University, USA. Dr. Tongen holds a PhD in Applied Mathematics (2002) from Northwestern University, USA. His research focuses on mathematical biology, numerical analysis, dynamical systems, and game theory.
Chapter 1. Introduction: The Linear ODE: x' = bx + c.- Chapter 2. Egg 1: The Quadratic ODE: x' = ax2 + bx + c.- Chapter 3. Egg 2: The First Order Exponent ODE: x' = xr.- Chapter 4. Egg 3: The First Order Sine ODE: x' = sin x.- Chapter 5. Egg 4: The Second Order Exponent ODE: x'' = -xr.- Chapter 6. Egg 5: The Second Order Sine ODE - The Single Pendulum.- Chapter 7. Egg 6: Newton's Method and the Steepest Descent Method.- Chapter 8. Egg 7: Determining Power Series for Functions through ODEs.- Chapter 9. Egg 8: The Periodic Planar ODE: x' = -y + ax2 + bxy + cy2 ; y' = x + dx2 + exy + fy2.- Chapter 10. Egg 9: The Complex Planar Quadratic ODE: z' = az2 + bz + c.- Chapter 11. Egg 10: Newton's N-Body Problem.- Chapter 12. Egg 11: ODEs and Conservation Laws.- Chapter 13. Egg 12: Delay Differential Equations.- Chapter 14. An Overview of Our Dozen ODEs.- Chapter 15. Appendix 1. A Review of Maclaurin Polynomials and Power Series.- Chapter 16. Appendix 2. The Dog Rabbit Chasing Problem.- Chapter 17. Appendix 3. A PDE Example: Burgers' Equation.- References.
Erscheinungsdatum | 19.03.2024 |
---|---|
Reihe/Serie | Problem Books in Mathematics |
Zusatzinfo | XII, 217 p. 45 illus., 36 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Schlagworte | Differential Equations • Dynamical Systems • linear ODE • Maclaurin polynomials • Newton's method • Newton's N-Body problem • numerical approximation • numerical solutions • ODE • Ordinary differential equations • Poincaré-Bendixson theory • polynomials • power series • stem |
ISBN-10 | 3-031-24589-X / 303124589X |
ISBN-13 | 978-3-031-24589-3 / 9783031245893 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |