Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Measure, Integral and Probability - Marek Capinski, Peter E. Kopp

Measure, Integral and Probability

2002
Springer Berlin (Hersteller)
978-3-540-76260-7 (ISBN)
CHF 52,35 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
The key concept is that of measure which is first developed on the real line and then presented abstractly to provide an introduction to the foundations of probability theory (the Kolmogorov axioms) which in turn opens a route to many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities. Throughout, the development of the Lebesgue Integral provides the essential ideas: the role of basic convergence theorems, a discussion of modes of convergence for measurable functions, relations to the Riemann integral and the fundamental theorem of calculus, leading to the definition of Lebesgue spaces, the Fubini and Radon-Nikodym Theorems and their roles in describing the properties of random variables and their distributions. Applications to probability include laws of large numbers and the central limit theorem. TOC:Preface.- Motivation and Preliminaries.- Measure.- Measurable Functions.- Integral.- Spaces of Integral Functions.- Product Measures.- Limit Theorems.- Index.- Literature.
Zusatzinfo XII, 227 pp. 23 figs.
Sprache englisch
Gewicht 410 g
Einbandart Paperback
Schlagworte Analysis • Integration • Measure-theoretic probability • measure theory • Probability
ISBN-10 3-540-76260-4 / 3540762604
ISBN-13 978-3-540-76260-7 / 9783540762607
Zustand Neuware
Haben Sie eine Frage zum Produkt?