Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Differential Galois Theory and Non-Integrability of Hamiltonian Systems (eBook)

eBook Download: PDF
2013 | 1999. by Birkhäuser Verlag, Switzerland
XIV, 167 Seiten
Springer Basel (Verlag)
978-3-0348-0723-4 (ISBN)

Lese- und Medienproben

Differential Galois Theory and Non-Integrability of Hamiltonian Systems - Juan J. Morales Ruiz
Systemvoraussetzungen
51,16 inkl. MwSt
(CHF 49,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is devoted to the relation between two different concepts of integrability: the complete integrability of complex analytical Hamiltonian systems and the integrability of complex analytical linear differential equations. For linear differential equations, integrability is made precise within the framework of differential Galois theory. The connection of these two integrability notions is given by the variational equation (i.e. linearized equation) along a particular integral curve of the Hamiltonian system. The underlying heuristic idea, which motivated the main results presented in this monograph, is that a necessary condition for the integrability of a Hamiltonian system is the integrability of the variational equation along any of its particular integral curves. This idea led to the algebraic non-integrability criteria for Hamiltonian systems. These criteria can be considered as generalizations of classical non-integrability results by Poincaré and Lyapunov, as well as more recent results by Ziglin and Yoshida. Thus, by means of the differential Galois theory it is not only possible to understand all these approaches in a unified way but also to improve them. Several important applications are also included: homogeneous potentials, Bianchi IX cosmological model, three-body problem, Hénon-Heiles system, etc.The book is based on the original joint research of the author with J.M. Peris, J.P. Ramis and C. Simó, but an effort was made to present these achievements in their logical order rather than their historical one. The necessary background on differential Galois theory and Hamiltonian systems is included, and several new problems and conjectures which open new lines of research are proposed.- - -The book is an excellent introduction to non-integrability methods in Hamiltonian mechanics and brings the reader to the forefront of research in the area. The inclusion of a large number of worked-out examples, many of wide applied interest, is commendable. There are many historical references, and an extensive bibliography.(Mathematical Reviews)For readers already prepared in the two prerequisite subjects [differential Galois theory and Hamiltonian dynamical systems], the author has provided a logically accessible account of a remarkable interaction between differential algebra and dynamics.(Zentralblatt MATH)

Juan J. Morales Ruiz is Professor at the Universidad Politécnica de Madrid, Spain.          

1 Introduction.- 2 Differential Galois Theory.- 2.1 Algebraic groups.- 2.2 Classical approach.- 2.3 Meromorphic connections.- 2.4 The Tannakian approach.- 2.5 Stokes multipliers.- 2.6 Coverings and differential Galois groups.- 2.7 Kovacic’s algorithm.- 2.8 Examples.- 2.8.1 The hypergeometric equation.- 2.8.2 The Bessel equation.- 2.8.3 The confluent hypergeometric equation.- 2.8.4 The Lamé equation.- 3 Hamiltonian Systems.- 3.1 Definitions.- 3.2 Complete integrability.- 3.3 Three non-integrability theorems.- 3.4 Some properties of Poisson algebras.- 4 Non-integrability Theorems.- 4.1 Variational equations.- 4.1.1 Singular curves.- 4.1.2 Meromorphic connection associated with the variational equation.- 4.1.3 Reduction to normal variational equations.- 4.1.4 Reduction from the Tannakian point of view.- 4.2 Main results.- 4.3 Examples.- 5 Three Models.- 5.1 Homogeneous potentials.- 5.1.1 The model.- 5.1.2 Non-integrability theorem.- 5.1.3 Examples.- 5.2 The Bianchi IX cosmological model.- 5.2.1 The model.- 5.2.2 Non-integrability.- 5.3 Sitnikov’s Three-Body Problem.- 5.3.1 The model.- 5.3.2 Non-integrability.- 6 An Application of the Lamé Equation.- 6.1 Computation of the potentials.- 6.2 Non-integrability criterion.- 6.3 Examples.- 6.4 The homogeneous Hénon-Heiles potential.- 7 A Connection with Chaotic Dynamics.- 7.1 Grotta-Ragazzo interpretation of Lerman’s theorem.- 7.2 Differential Galois approach.- 7.3 Example.- 8 Complementary Results and Conjectures.- 8.1 Two additional applications.- 8.2 A conjecture about the dynamic.- 8.3 Higher-order variational equations.- 8.3.1 A conjecture.- 8.3.2 An application.- A Meromorphic Bundles.- B Galois Groups and Finite Coverings.- C Connections with Structure Group.

Erscheint lt. Verlag 2.12.2013
Reihe/Serie Modern Birkhäuser Classics
Verlagsort Basel
Sprache englisch
Schlagworte Algebra • Bifurcation Theory • Differential Algebra • differential equation • differential Galois theory • Dynamical system • Dynamical Systems • Galois group • Galois Theory • Hamiltonian systems • limit cycles • limit periodic sets • Linear Differential Equations
ISBN-10 3-0348-0723-6 / 3034807236
ISBN-13 978-3-0348-0723-4 / 9783034807234
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.