Cohomology of Number Fields
Seiten
1999
|
1., Ed.
Springer Berlin (Verlag)
978-3-540-66671-4 (ISBN)
Springer Berlin (Verlag)
978-3-540-66671-4 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Galois modules over local and global fields form the main subject of this monograph, which can serve both as a textbook for students, and as a reference book for the working mathematician, on cohomological topics in number theory. The first part provides necessary algebraic background: profinite groups and their cohomology, duality groups, free products, modules over complete group rings and their homotopy theory. The arithmetic part deals with Galois groups of local and global fields: local Tate duality, the structure of the absolute Galois group of a local field, extensions of global fields with restricted ramification, cohomology of the idèle and the idèle class groups, Poitou-Tate duality for finitely generated Galois modules, the Hasse principle, the theorem of Grunwald-Wang, Leopoldt's conjecture, Riemann's existence theorem for number fields, embedding problems, the theorems of Iwasawa and of Safarevic on solvable groups as Galois groups over global fields, Iwasawa theory of local and global number fields, and the characterization of number fields by their absolute Galois groups.
Dr. Jürgen Neukirch, lehrt am Fachbereich Mathematik der Universität Regensburg.
I Algebraic Theory: Cohomology of Profinite Groups.- Some Homological Algebra.- Duality Properties of Profinite Groups.- Free Products of Profinite Groups.- Iwasawa Modules II Arithmetic Theory: Galois Cohomology.- Cohomology of Local Fields.- Cohomology of Global Fields.- The Absolute Galois Group of a Global Field.- Restricted Ramification.- Iwasawa Theory of Number Fields; Anabelian Geometry.- Literature.- Index.
Reihe/Serie | Grundlehren der mathematischen Wissenschaften ; 323 |
---|---|
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 1154 g |
Einbandart | gebunden |
Schlagworte | Algebraic Number Fields • Algebraische Zahlentheorie • Cohomology theory • Galois groups • HC/Mathematik/Arithmetik, Algebra • Kohomologie • Kohomologietheorie • Zahlenkörper • Zahlentheorie |
ISBN-10 | 3-540-66671-0 / 3540666710 |
ISBN-13 | 978-3-540-66671-4 / 9783540666714 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |