Numerische Mathematik (eBook)
150 Seiten
Springer Basel (Verlag)
978-3-7643-8429-6 (ISBN)
"Numerische Mathematik", in zwei Bänden, ist eine Einführung in die Numerische Mathematik anhand von Differenzialgleichungsproblemen. Gegliedert nach elliptischen, parabolischen und hyperbolischen Differenzialgleichungen, erläutert sie zunächst jeweils die Diskretisierung solcher Probleme. Als Diskretisierungstechniken stehen Finite-Elemente-Methoden im Raum und (partitionierte) Runge-Kutta-Methoden in der Zeit im Vordergrund. Die diskretisierten Gleichungen motivieren die Diskussion von Methoden für endlichdimensionale (nicht)lineare Gleichungen, die anschließend als eigenständige Themen behandelt werden. Ein in sich geschlossenes Bild.
Walter Zulehner ist Professor für Numerische Mathematik an der Johannes-Kepler-Universität Linz (Österreich).
I Einleitung.- II Variationsformulierung eines parabolischen Anfangsrandwertproblems.- III Semi-Diskretisierung.- IV Explizite Runge-Kutta-Verfahren für Anfangswertprobleme.- V Steife Differentialgleichungen.- VI Erweiterung auf hyperbolische Anfangsrandwertprobleme 2. Ordnung.- VII Runge-Kutta-Verfahren für Anfangswertprobleme 2. Ordnung.- VIII Partitionierte Runge-Kutta-Verfahren.- Literaturverzeichnis.- Index.
Erscheint lt. Verlag | 21.12.2011 |
---|---|
Reihe/Serie | Mathematik Kompakt |
Verlagsort | Basel |
Sprache | deutsch |
Schlagworte | Analysis • Bachelor • Instationäre Probleme • Mathematik • Vorlesung |
ISBN-10 | 3-7643-8429-8 / 3764384298 |
ISBN-13 | 978-3-7643-8429-6 / 9783764384296 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.