Modules over Operads and Functors (eBook)
X, 314 Seiten
Springer Berlin (Verlag)
978-3-540-89056-0 (ISBN)
Categorical and operadic background.- Symmetric monoidal categories for operads.- Symmetric objects and functors.- Operads and algebras in symmetric monoidal categories.- Miscellaneous structures associated to algebras over operads.- The category of right modules over operads and functors.- Definitions and basic constructions.- Tensor products.- Universal constructions on right modules over operads.- Adjunction and embedding properties.- Algebras in right modules over operads.- Miscellaneous examples.- Homotopical background.- Symmetric monoidal model categories for operads.- The homotopy of algebras over operads.- The (co)homology of algebras over operads.- The homotopy of modules over operads and functors.- The model category of right modules.- Modules and homotopy invariance of functors.- Extension and restriction functors and model structures.- Miscellaneous applications.- Appendix: technical verifications.- Shifted modules over operads and functors.- Shifted functors and pushout-products.- Applications of pushout-products of shifted functors.
Erscheint lt. Verlag | 20.4.2009 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Verlagsort | Berlin |
Sprache | englisch |
Schlagworte | 18D50, 55P48, 18G55, 18A25 • Algebraic Structure • algebraic topology • Cohomology theory • Homology • Homotopy • Model Category • Operad • Symmetric Monoidal Category |
ISBN-10 | 3-540-89056-4 / 3540890564 |
ISBN-13 | 978-3-540-89056-0 / 9783540890560 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.