Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Physical Chemistry - Thomas Engel, Philip Reid

Physical Chemistry

United States Edition
Media-Kombination
1088 Seiten
2009 | 2nd edition
Pearson
978-0-321-61505-3 (ISBN)
CHF 137,55 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
For two-semester courses in Physical Chemistry or Quantum Chemistry.

This full-color, modern physical chemistry text offers arresting illustrations that set it apart from others of its kind. The authors focus on core topics of physical chemistry, presented within a modern framework of applications. Extensive math derivations are provided, yet the book retains the significant chemical rigor needed in physical chemistry.

Thomas Engel has taught chemistry for more than 20 years at the University of Washington, where he is currently Professor of Chemistry and Associate Chair for the Undergraduate Program. Professor Engel received his bachelor's and master's degrees in chemistry from the Johns Hopkins University, and his Ph.D. in chemistry from the University of Chicago. He then spent 11 years as a researcher in Germany and Switzerland, in which time he received the Dr. rer. nat. habil. degree from the Ludwig Maximilians University in Munich. In 1980, he left the IBM research laboratory in Zurich to become a faculty member at the University of Washington.   Professor Engel's research interests are in the area of surface chemistry, and he has published more than 80 articles and book chapters in this field. He has received the Surface Chemistry or Colloids Award from the American Chemical Society and a Senior Humboldt Research Award from the Alexander von Humboldt Foundation, which has allowed him to establish collaborations with researchers in Germany. He is currently working together with European manufacturers of catalytic converters to improve their performance for diesel engines. Philip Reid has taught chemistry at the University of Washington since he joined the chemistry faculty in 1995. Professor Reid received his bachelor's degree from the University of Puget Sound in 1986, and his Ph.D. in chemistry from the University of California at Berkeley in 1992. He performed postdoctoral research at the University of Minnesota, Twin Cities, campus before moving to Washington.   Professor Reid's research interests are in the areas of atmosphere chemistry, condensed-phase reaction dynamics, and nonlinear optical materials. He has published more than 70 articles in these fields. Professor Reid is the recipient of a CAREER award from the National Science Foundation, is a Cottrell Scholar of the Research Corporation, and is a Sloan fellow.

CHAPTER 1: FUNDAMENTAL CONCEPTS OF THERMODYNAMICS
1.1    What Is Thermodynamics and Why Is It Useful?
1.2    Basic Definitions Needed to Describe Thermodynamic Systems
1.3    Thermometry
1.4    Equations of State and the Ideal Gas Law
1.5    A Brief Introduction to Real Gases

CHAPTER 2: HEAT, WORK, INTERNAL ENERGY, ENTHALPY, AND THE FIRST LAW OF THERMODYNAMICS
2.1    The Internal Energy and the First Law of Thermodynamics
2.2    Work
2.3    Heat
2.4    Heat Capacity
2.5    State Functions and Path Functions
2.6    Equilibrium, Change, and Reversibility
2.7    Comparing Work for Reversible and Irreversible Processes
2.8    Determining  and Introducing Enthalpy, a New State Function
2.9    Calculating q, w,  , and   for Processes Involving Ideal Gases
2.10    The Reversible Adiabatic Expansion and Compression of an Ideal Gas

CHAPTER 3: THE IMPORTANCE OF STATE FUNCTIONS: INTERNAL ENERGY AND ENTHALPY
3.1    The Mathematical Properties of State Functions
3.2    The Dependence of U on V and T
3.3    Does the Internal Energy Depend More Strongly on V or T?
3.4    The Variation of Enthalpy with Temperature at Constant Pressure
3.5    How Are CP and CV Related?
3.6    The Variation of Enthalpy with Pressure at Constant Temperature
3.7    The Joule-Thomson Experiment
3.8    Liquefying Gases Using an Isenthalpic Expansion

CHAPTER 4: THERMOCHEMISTRY
4.1    Energy Stored in Chemical Bonds Is Released or Taken Up in Chemical Reactions
4.2    Internal Energy and Enthalpy Changes Associated with Chemical Reactions
4.3    Hess’s Law Is Based on Enthalpy Being a State Function
4.4    The Temperature Dependence of Reaction Enthalpies
4.5    The Experimental Determination of   and   for Chemical Reactions
4.6    Differential Scanning Calorimetry

CHAPTER 5: ENTROPY AND THE SECOND AND THIRD LAWS OF THERMODYNAMICS
5.1    The Universe Has a Natural Direction of Change
5.2    Heat Engines and the Second Law of Thermodynamics
5.3    Introducing Entropy
5.4    Calculating Changes in Entropy
5.5    Using Entropy to Calculate the Natural Direction of a Process in an Isolated System
5.6    The Clausius Inequality
5.7    The Change of Entropy in the Surroundings and    =   +  
5.8    Absolute Entropies and the Third Law of Thermodynamics
5.9    Standard States in Entropy Calculations
5.10    Entropy Changes in Chemical Reactions
5.11    Refrigerators, Heat Pumps, and Real Engines
5.12    (Supplemental) Using the Fact that S Is a State Function to Determine the Dependence of S on V and T
5.13    (Supplemental) The Dependence of S on T and P
5.14    (Supplemental) The Thermodynamic Temperature Scale

CHAPTER 6: CHEMICAL EQUILIBRIUM
6.1    The Gibbs Energy and the Helmholtz Energy
6.2    The Differential Forms of U, H, A, and G
6.3    The Dependence of the Gibbs and Helmholtz Energies on P, V, and T
6.4    The Gibbs Energy of a Reaction Mixture
6.5    The Gibbs Energy of a Gas in a Mixture
6.6    Calculating the Gibbs Energy of Mixing for Ideal Gases
6.7    Expressing Chemical Equilibrium in an Ideal Gas Mixture in Terms of the  
6.8    Calculating   and Introducing the Equilibrium Constant for a Mixture of Ideal Gases
6.9    Calculating the Equilibrium Partial Pressures in a Mixture of Ideal Gases
6.10    The Variation of KP with Temperature
6.11    Equilibria Involving Ideal Gases and Solid or Liquid Phases
6.12    Expressing the Equilibrium Constant in Terms of Mole Fraction or Molarity
6.13    The Dependence of   on T and P
6.14    (Supplemental) A Case Study: The Synthesis of Ammonia
6.15    (Supplemental) Expressing U and H and Heat Capacities Solely in Terms of Measurable Quantities

CHAPTER 7: THE PROPERTIES OF REAL GASES
7.1    Real Gases and Ideal Gases
7.2    Equations of State for Real Gases and Their Range of Applicability
7.3    The Compression Factor
7.4    The Law of Corresponding States
7.5    Fugacity and the Equilibrium Constant for Real Gases

CHAPTER 8: PHASE DIAGRAMS AND THE RELATIVE STABILITY OF SOLIDS, LIQUIDS, AND GASES
8.1    What Determines the Relative Stability of the Solid, Liquid, and Gas Phases?
8.2    The Pressure–Temperature Phase Diagram
8.3    The Phase Rule
8.4    The Pressure–Volume and Pressure–Volume–Temperature Phase Diagrams
8.5    Providing a Theoretical Basis for the P–T Phase Diagram
8.6    Using the Clapeyron Equation to Calculate Vapor Pressure as a Function of T
8.7    The Vapor Pressure of a Pure Substance Depends on the Applied Pressure
8.8    Surface Tension
8.9    Chemistry in Supercritical Fluids
8.10    Liquid Crystals and LCD Displays

CHAPTER 9: IDEAL AND REAL SOLUTIONS
9.1    Defining the Ideal Solution
9.2    The Chemical Potential of a Component in the Gas and Solution Phases
9.3    Applying the Ideal Solution Model to Binary Solutions
9.4    The Temperature– Composition Diagram and Fractional Distillation
9.5    The Gibbs–Duhem Equation
9.6    Colligative Properties
9.7    The Freezing Point Depression and Boiling Point Elevation
9.8    The Osmotic Pressure
9.9    Real Solutions Exhibit Deviations from Raoult’s Law
9.10    The Ideal Dilute Solution
9.11    Activities Are Defined with Respect to Standard States
9.12    Henry’s Law and the Solubility of Gases in a Solvent
9.13    Chemical Equilibrium in Solutions
9.14 Solutions Formed From Partially miscible Liquids
9.15 The Solid-Solution Equilibrium

CHAPTER 10: ELECTROLYTE SOLUTIONS
10.1    The Enthalpy, Entropy, and Gibbs Energy of Ion Formation in Solutions
10.2    Understanding the Thermodynamics of Ion Formation and Solvation
10.3    Activities and Activity Coefficients for Electrolyte Solutions
10.4    Calculating   Using the Debye–Hückel Theory
10.5    Chemical Equilibrium in Electrolyte Solutions

CHAPTER 11: ELECTROCHEMICAL CELLS, BATTERIES, AND FUEL CELLS
11.1    The Effect of an Electrical Potential on the Chemical Potential of Charged Species
11.2    Conventions and Standard States in Electrochemistry
11.3    Measurement of the Reversible Cell Potential
11.4    Chemical Reactions in Electrochemical Cells and the Nernst Equation
11.5    Combining Standard Electrode Potentials to Determine the Cell Potential
11.6    Obtaining Reaction Gibbs Energies and Reaction Entropies from Cell Potentials
11.7    The Relationship between the Cell EMF and the Equilibrium Constant
11.8    Determination of E° and Activity Coefficients Using an Electrochemical Cell
11.9    Cell Nomenclature and Types of Electrochemical Cells
11.10    The Electrochemical Series
11.11    Thermodynamics of Batteries and Fuel Cells
11.12    The Electrochemistry of Commonly Used Batteries
11.13    Fuel Cells
11.14    (Supplemental) Electrochemistry at the Atomic Scale
11.15    (Supplemental) Using Electrochemistry for Nanoscale Machining
11.16    (Supplemental) Absolute Half-Cell Potentials

CHAPTER 12: FROM CLASSICAL TO QUANTUM MECHANICS
12.1    Why Study Quantum Mechanics?
12.2    Quantum Mechanics Arose Out of the Interplay of Experiments and Theory
12.3    Blackbody Radiation
12.4    The Photoelectric Effect
12.5    Particles Exhibit Wave-Like Behavior
12.6    Diffraction by a Double Slit
12.7    Atomic Spectra and the Bohr Model for the Hydrogen Atom

CHAPTER 13: THE SCHRÖDINGER EQUATION
13.1    What Determines If a System Needs to Be Described Using Quantum Mechanics?
13.2    Classical Waves and the Nondispersive Wave Equation
13.3    Waves Are Conveniently Represented as Complex Functions
13.4    Quantum Mechanical Waves and the Schrödinger Equation
13.5    Solving the Schrödinger Equation: Operators, Observables, Eigenfunctions, and Eigenvalues
13.6    The Eigenfunctions of a Quantum Mechanical Operator Are Orthogonal
13.7    The Eigenfunctions of a Quantum Mechanical Operator Form a Complete Set
13.8    Summing Up the New Concepts

CHAPTER 14: THE QUANTUM MECHANICAL POSTULATES
14.1    The Physical Meaning Associated with the Wave Function
14.2    Every Observable Has a Corresponding Operator
14.3    The Result of an Individual Measurement
14.4    The Expectation Value
14.5    The Evolution in Time of a Quantum Mechanical System

CHAPTER 15: USING QUANTUM MECHANICS ON SIMPLE SYSTEMS
15.1    The Free Particle
15.2    The Particle in a One-Dimensional Box
15.3    Two- and Three-Dimensional Boxes
15.4    Using the Postulates to Understand the Particle in the Box and Vice Versa

CHAPTER 16: THE PARTICLE IN THE BOX AND THE REAL WORLD
16.1    The Particle in the Finite Depth Box
16.2    Differences in Overlap between Core and Valence Electrons
16.3    Pi Electrons in Conjugated Molecules Can Be Treated as Moving Freely in a Box
16.4    Why Does Sodium Conduct Electricity and Why Is Diamond an Insulator?
16.5    Tunneling through a Barrier
16.6    The Scanning Tunneling Microscope
16.7    Tunneling in Chemical Reactions
16.8    (Supplemental) Quantum Wells and Quantum Dots

CHAPTER 17: COMMUTING AND NONCOMMUTING OPERATORS AND THE SURPRISING CONSEQUENCES OF ENTANGLEMENT
17.1    Commutation Relations
17.2    The Stern-Gerlach Experiment
17.3    The Heisenberg Uncertainty Principle
17.4    (Supplemental) The Heisenberg Uncertainty Principle Expressed in Terms of Standard Deviations
17.5    (Supplemental) A Thought Experiment Using a Particle in a Three-Dimensional Box
17.6    (Supplemental) Entangled States, Teleportation, and Quantum Computers

CHAPTER 18: A QUANTUM MECHANICAL MODEL FOR THE VIBRATION AND ROTATION OF MOLECULES
18.1    Solving the Schrödinger Equation for the Quantum Mechanical Harmonic Oscillator
18.2    Solving the Schrödinger Equation for Rotation in Two Dimensions
18.3    Solving the Schrödinger Equation for Rotation in Three Dimensions
18.4    The Quantization of Angular Momentum
18.5    The Spherical Harmonic Functions
18.6    (Optional Review) The Classical Harmonic Oscillator
18.7    (Optional Review) Angular Motion and the Classical Rigid Rotor
18.8    (Supplemental) Spatial Quantization

CHAPTER 19: THE VIBRATIONAL AND ROTATIONAL SPECTROSCOPY OF DIATOMIC MOLECULES
19.1    An Introduction to Spectroscopy
19.2    Absorption, Spontaneous Emission, and Stimulated Emission
19.3    An Introduction to Vibrational Spectroscopy
19.4    The Origin of Selection Rules
19.5    Infrared Absorption Spectroscopy
19.6    Rotational Spectroscopy
19.7    (Supplemental) Fourier Transform Infrared Spectroscopy
19.8    (Supplemental) Raman Spectroscopy
19.9    (Supplemental) How Does the Transition Rate between States Depend on Frequency?

CHAPTER 20: THE HYDROGEN ATOM
20.1    Formulating the Schrödinger Equation
20.2    Solving the Schrödinger Equation for the Hydrogen Atom
20.3    Eigenvalues and Eigenfunctions for the Total Energy
20.4    The Hydrogen Atom Orbitals
20.5    The Radial Probability Distribution Function
20.6    The Validity of the Shell Model of an Atom

CHAPTER 21: MANY-ELECTRON ATOMS
21.1    Helium: The Smallest Many-Electron Atom
21.2    Introducing Electron Spin
21.3    Wave Functions Must Reflect the Indistinguishability of Electrons
21.4    Using the Variational Method to Solve the Schrödinger Equation
21.5    The Hartree-Fock Self-Consistent Field Method
21.6    Understanding Trends in the Periodic Table from Hartree-Fock Calculations

CHAPTER 22: QUANTUM STATES FOR MANY-ELECTRON ATOMS AND ATOMIC SPECTROSCOPY
22.1    Good Quantum Numbers, Terms, Levels, and States
22.2    The Energy of a Configuration Depends on Both Orbital and Spin Angular Momentum
22.3    Spin-Orbit Coupling Breaks Up a Term into Levels
22.4    The Essentials of Atomic Spectroscopy
22.5    Analytical Techniques Based on Atomic Spectroscopy
22.6    The Doppler Effect
22.7    The Helium-Neon Laser
22.8    Laser Isotope Separation
22.9    Auger Electron and X-Ray Photoelectron Spectroscopies
22.10    Selective Chemistry of Excited States: O(3P) and O(1D)
22.11    (Supplemental) Configurations with Paired and Unpaired Electron Spins Differ in Energy

CHAPTER 23: THE CHEMICAL BOND IN DIATOMIC MOLECULES
23.1    The Simplest One-Electron Molecule:  
23.2    The Molecular Wave Function for Ground-State  
23.3    The Energy Corresponding to the H2+ Molecular Wave Functions  
23.4    A Closer Look at the H2+ Molecular Wave Functions  
23.5    Combining Atomic Orbitals to Form Molecular Orbitals
23.6    Molecular Orbitals for Homonuclear Diatomic Molecules
23.7    The Electronic Structure of Many-Electron Molecules
23.8    Bond Order, Bond Energy, and Bond Length
23.9    Heteronuclear Diatomic Molecules
23.10    The Molecular Electrostatic Potential

CHAPTER 24: MOLECULAR STRUCTURE AND ENERGY LEVELS FOR POLYATOMIC MOLECULES
24.1    Lewis Structures and the VSEPR Model
24.2    Describing Localized Bonds Using Hybridization for Methane, Ethene, and Ethyne
24.3    Constructing Hybrid Orbitals for Nonequivalent Ligands
24.4    Using Hybridization to Describe Chemical Bonding
24.5    Predicting Molecular Structure Using Molecular Orbital Theory
24.6    How Different Are Localized and Delocalized Bonding Models?
24.7    Qualitative Molecular Orbital Theory for Conjugated and Aromatic Molecules: The Hückel Model
24.8    From Molecules to Solids
24.9    Making Semiconductors Conductive at Room Temperature

CHAPTER 25: ELECTRONIC SPECTROSCOPY
25.1        The Energy of Electronic Transitions
25.2        Molecular Term Symbols
25.3        Transitions between Electronic States of Diatomic Molecules
25.4        The Vibrational Fine Structure of Electronic Transitions in Diatomic Molecules
25.5        UV-Visible Light Absorption in Polyatomic Molecules
25.6        Transitions among the Ground and Excited States
25.7        Singlet–Singlet Transitions: Absorption and Fluorescence
25.8        Intersystem Crossing and Phosphorescence
25.9        Fluorescence Spectroscopy and Analytical Chemistry
25.10    Ultraviolet Photoelectron Spectroscopy
25.11    Single Molecule Spectroscopy
25.12        Fluorescent Resonance Energy Transfer (FRET)
25.13    Linear and Circular Dichroism
25.14    (Supplemental) Assigning + and – to ∑ Terms of Diatomic Molecules

CHAPTER 26: COMPUTATIONAL CHEMISTRY
26.1        The Promise of Computational Chemistry
26.2        Potential Energy Surfaces
26.3        Hartree-Fock Molecular Orbital Theory: A Direct Descendant of the Schrödinger Equation
26.4        Properties of Limiting Hartree-Fock Models
26.5     Theoretical Models and Theoretical Model Chemistry
26.6     Moving Beyond Hartree-Fock Theory
26.7        Gaussian Basis Sets
26.8     Selection of a Theoretical Model
26.9        Graphical Models
26.10    Conclusion

CHAPTER 27: MOLECULAR SYMMETRY
27.1    Symmetry Elements, Symmetry Operations, and Point Groups
27.2    Assigning Molecules to Point Groups
27.3    The H2O Molecule and the C2v Point Group
27.4    Representations of Symmetry Operators, Bases for Representations, and the Character Table
27.5    The Dimension of a Representation
27.6    Using the C2v Representations to Construct Molecular Orbitals for H2O
27.7    The Symmetries of the Normal Modes of Vibration of Molecules
27.8    Selection Rules and Infrared versus Raman Activity
27.9    (Supplemental) Using the Projection Operator Method to Generate MOs That Are Bases for Irreducible Representations

CHAPTER 28: NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
28.1    Intrinsic Nuclear Angular Momentum and Magnetic Moment
28.2    The Energy of Nuclei of Nonzero Nuclear Spin in a Magnetic Field
28.3    The Chemical Shift for an Isolated Atom
28.4    The Chemical Shift for an Atom Embedded in a Molecule
28.5    Electronegativity of Neighboring Groups and Chemical Shifts
28.6    Magnetic Fields of Neighboring Groups and Chemical Shifts
28.7    Multiplet Splitting of NMR Peaks Arises through Spin–Spin Coupling
28.8    Multiplet Splitting When More Than Two Spins Interact
28.9    Peak Widths in NMR Spectroscopy
28.10    Solid-State NMR
28.11    NMR Imaging
28.12    (Supplemental) The NMR Experiment in the Laboratory and Rotating Frames
28.13    (Supplemental) Fourier Transform NMR Spectroscopy
28.14    (Supplemental) Two-Dimensional NMR

CHAPTER 29: PROBABILITY
29.1    Why Probability?
29.2    Basic Probability Theory
29.3    Stirling’s Approximation
29.4    Probability Distribution Functions
29.5    Probability Distributions Involving Discrete and Continuous Variables
29.6    Characterizing Distribution Functions

CHAPTER 30: THE BOLTZMANN DISTRIBUTION
30.1    Microstates and Configurations
30.2    Derivation of the Boltzmann Distribution
30.3    Dominance of the Boltzmann Distribution
30.4    Physical Meaning of the Boltzmann Distribution Law
30.5    The Definition of  

CHAPTER 31: ENSEMBLE AND MOLECULAR PARTITION FUNCTIONS
31.1    The Canonical Ensemble
31.2    Relating Q to q for an Ideal Gas
31.3    Molecular Energy Levels
31.4    Translational Partition Function
31.5    Rotational Partition Function: Diatomics
31.6    Rotational Partition Function: Polyatomics
31.7    Vibrational Partition Function
31.8    The Equipartition Theorem
31.9    Electronic Partition Function
31.10    Review

CHAPTER 32: STATISTICAL THERMODYNAMICS
32.1    Energy
32.2    Energy and Molecular Energetic Degrees of Freedom
32.3    Heat Capacity
32.4    Entropy
32.5    Residual Entropy
32.6    Other Thermodynamic Functions
32.7    Chemical Equilibrium

CHAPTER 33: KINETIC THEORY OF GASES
33.1    Kinetic Theory of Gas Motion and Pressure
33.2    Velocity Distribution in One Dimension
33.3    The Maxwell Distribution of Molecular Speeds
33.4    Comparative Values for Speed Distributions:  
33.5    Gas Effusion
33.6    Molecular Collisions
33.7    The Mean Free Path

CHAPTER 34: TRANSPORT PHENOMENA
34.1    What Is Transport?
34.2    Mass Transport: Diffusion
34.3    The Time Evolution of a Concentration Gradient
34.4    (Supplemental) Statistical View of Diffusion
34.5    Thermal Conduction
34.6    Viscosity of Gases
34.7    Measuring Viscosity
34.8    Diffusion in Liquids and Viscosity of Liquids
34.9    (Supplemental) Sedimentation and Centrifugation
34.10    Ionic Conduction

CHAPTER 35: ELEMENTARY CHEMICAL KINETICS
35.1    Introduction to Kinetics
35.2    Reaction Rates
35.3    Rate Laws
35.4    Reaction Mechanisms
35.5    Integrated Rate Law Expressions
35.6    (Supplemental) Numerical Approaches
35.7    Sequential First-Order Reactions
35.8    Parallel Reactions
35.9    Temperature Dependence of Rate Constants
35.10    Reversible Reactions and Equilibrium
35.11    (Supplemental) Perturbation-Relaxation Methods
35.12    (Supplemental) The Autoionization of Water: A T-Jump Example
35.13    Potential Energy Surfaces
35.14    Activated Complex Theory

CHAPTER 36: COMPLEX REACTION MECHANISMS
36.1    Reaction Mechanisms and Rate Laws
36.2    The Preequilibrium Approximation
36.3    The Lindemann Mechanism
36.4    Catalysis
36.5    Radical-Chain Reactions
36.6    Radical-Chain Polymerization
36.7    Explosions
36.8    Photochemistry

APPENDIX A Math Supplement
APPENDIX B Data Tables
APPENDIX C Point Group Character Tables
APPENDIX D Answers to Selected End-of-Chapter Problems
INDEX

Erscheint lt. Verlag 26.6.2009
Sprache englisch
Maße 278 x 222 mm
Gewicht 2454 g
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
ISBN-10 0-321-61505-0 / 0321615050
ISBN-13 978-0-321-61505-3 / 9780321615053
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich