Neuronal Noise
Seiten
2012
Springer-Verlag New York Inc.
978-0-387-79019-0 (ISBN)
Springer-Verlag New York Inc.
978-0-387-79019-0 (ISBN)
Neuronal Noise combines experimental, theoretical and computational results to show how noise is inherent to neuronal activity, and how noise can be important for neuronal computations. The book covers many aspects of noise in neurons, with an emphasis on the largest source of noise: synaptic noise.
Neuronal Noise combines experimental, theoretical and computational results to show how noise is inherent to neuronal activity, and how noise can be important for neuronal computations. The book covers many aspects of noise in neurons, with an emphasis on the largest source of noise: synaptic noise. It provides students and young researchers with an overview of the important methods and concepts that have emerged from research in this area. It also provides the specialist with a summary of the large body of sometimes contrasting experimental data, and different theories proposed to explore the computational power that various forms of "noise" can confer to neurons.
Neuronal Noise combines experimental, theoretical and computational results to show how noise is inherent to neuronal activity, and how noise can be important for neuronal computations. The book covers many aspects of noise in neurons, with an emphasis on the largest source of noise: synaptic noise. It provides students and young researchers with an overview of the important methods and concepts that have emerged from research in this area. It also provides the specialist with a summary of the large body of sometimes contrasting experimental data, and different theories proposed to explore the computational power that various forms of "noise" can confer to neurons.
1 Introduction.- 2 Basics.- 3 Synaptic noise.- 4 Models of synaptic noise.- 5 Integrative properties in the presence of noise6 Recreating synaptic noise using dynamic-clamp.- 7 The mathematics of synaptic noise.- 8 Analyzing synaptic noise.- 9 Case studies.- 10 Conclusions and perspectives A Numerical integration of stochastic differential equations.- B Distributed Generator Algorithm.- C The Fokker-Planck formalism.- D The RT-NEURON interface for dynamic-clamp.- References.- Index.
Erscheint lt. Verlag | 6.1.2012 |
---|---|
Reihe/Serie | Springer Series in Computational Neuroscience ; 8 |
Zusatzinfo | XVIII, 458 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Medizin / Pharmazie ► Medizinische Fachgebiete ► Neurologie |
Medizin / Pharmazie ► Studium | |
Naturwissenschaften ► Biologie ► Humanbiologie | |
ISBN-10 | 0-387-79019-5 / 0387790195 |
ISBN-13 | 978-0-387-79019-0 / 9780387790190 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
interdisziplinäre Diagnose- und Behandlungsstrategien
Buch | Hardcover (2024)
Urban & Fischer in Elsevier (Verlag)
CHF 135,75
Buch | Hardcover (2024)
Springer (Verlag)
CHF 195,95