Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Quantum Theory of Conducting Matter

Newtonian Equations of Motion for a Bloch Electron

, (Autoren)

Buch | Hardcover
244 Seiten
2007
Springer-Verlag New York Inc.
978-0-387-74102-4 (ISBN)

Lese- und Medienproben

Quantum Theory of Conducting Matter - Shigeji Fujita, Kei Ito
CHF 149,75 inkl. MwSt
The measurements of the Hall coe?cient R and the Seebeck coe?cient H (thermopower) S are known to give the sign of the carrier charge q. The complicated Fermi surface of Ag can generate “electrons” and “holes,” and it is responsible for the observed negative Hall coe?cient R H and positive Seebeck coe?cient S.
The measurements of the Hall coe?cient R and the Seebeck coe?cient H (thermopower) S are known to give the sign of the carrier charge q. Sodium (Na) forms a body-centered cubic (BCC) lattice, where both R and S are H negative, indicating that the carrier is the “electron. ” Silver (Ag) forms a face-centered cubic (FCC) lattice, where the Hall coe?cient R is negative H but the Seebeck coe?cient S is positive. This complication arises from the Fermi surface of the metal. The “electrons” and the “holes” play important roles in conducting matter physics. The “electron” (“hole”), which by de?- tion circulates counterclockwise (clockwise) around the magnetic ?eld (?ux) vector B cannot be discussed based on the prevailing equation of motion in the electron dynamics: dk/dt = q(E +v×B), where k = k-vector, E = electric ?eld, and v = velocity. The energy-momentum relation is not incorporated in this equation. In this book we shall derive Newtonian equations of motion with a s- metric mass tensor. We diagonalize this tensor by introducing the principal masses and the principal axes of the inverse-mass tensor associated with the Fermi surface. Using these equations, we demonstrate that the “electrons” (“holes”) are generated, depending on the curvature sign of the Fermi s- face. The complicated Fermi surface of Ag can generate “electrons” and “holes,” and it is responsible for the observed negative Hall coe?cient R H and positive Seebeck coe?cient S.

Shigeji Fujita is Professor of Physics at State University of New York at Buffalo and has published 3 books with the Springer family since 1996.  His areas of expertise include statistical physics, solid and liquid state physics, superconductivity and Quantum Hall Effect theory.  Kei Ito is also a Professor of Physics at the State University of New York at Buffalo, while on leave from the National Center for University Entrance Examinations in Tokyo, Japan.

Preliminaries.- Lattice Vibrations and Heat Capacity.- Free Electrons and Heat Capacity.- Electric Conduction and the Hall Effect.- Magnetic Susceptibility.- Boltzmann Equation Method.- Bloch Electron Dynamics.- Bloch Theorem.- The Fermi Liquid Model.- The Fermi Surface.- Bloch Electron Dynamics.- Applications Fermionic Systems (Electrons).- De Haas–Van Alphen Oscillations.- Magnetoresistance.- Cyclotron Resonance.- Seebeck Coefficient (Thermopower).- Infrared Hall Effect.

Erscheint lt. Verlag 7.11.2007
Zusatzinfo 80 Illustrations, black and white; XX, 244 p. 80 illus.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Naturwissenschaften Physik / Astronomie Optik
Naturwissenschaften Physik / Astronomie Quantenphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
ISBN-10 0-387-74102-X / 038774102X
ISBN-13 978-0-387-74102-4 / 9780387741024
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
die Geschichte und Erforschung unserer Galaxie

von Harald Lesch; Cecilia Scorza-Lesch; Arndt Latußeck

Buch | Hardcover (2023)
C.Bertelsmann (Verlag)
CHF 40,80