Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Applied AI Techniques in the Process Industry (eBook)

From Molecular Design to Process Design and Optimization

Chang He, Jingzheng Ren (Herausgeber)

eBook Download: PDF
2024
336 Seiten
Wiley-VCH (Verlag)
978-3-527-84547-7 (ISBN)

Lese- und Medienproben

Applied AI Techniques in the Process Industry -
Systemvoraussetzungen
106,99 inkl. MwSt
(CHF 104,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Thorough discussion of data-driven and first principles models for energy-relevant systems and processes, approached through various in-depth case studies

Applied AI Techniques in the Process Industry identifies and categorizes the various hybrid models available that integrate data-driven models for energy-relevant systems and processes with different forms of process knowledge and domain expertise. State-of-the-art techniques such as reduced-order modeling, sparse identification, and physics-informed neural networks are comprehensively summarized, along with their benefits, such as improved interpretability and predictive power.

Numerous in-depth case studies regarding the covered models and methods for data-driven modeling, process optimization, and machine learning are presented, from screening high-performance ionic liquids and AI-assisted drug design to designing heat exchangers with physics-informed deep learning.

Edited by two highly qualified academics and contributed to by a number of leading experts in the field, Applied AI Techniques in the Process Industry includes information on:

  • Integration of observed data and reaction mechanisms in deep learning for designing sustainable glycolic acid
  • Machine learning-aided rational screening of task-specific ionic liquids and AI for property modeling and solvent tailoring
  • Integration of incomplete prior knowledge into data-driven inferential sensor models under the variational Bayesian framework
  • AI-aided high-throughput screening, optimistic design of MOF materials for adsorptive gas separation, and reduced-order modeling and optimization of cooling tower systems
  • Surrogate modeling for accelerating optimization of complex systems in chemical engineering

Applied AI Techniques in the Process Industry is an essential reference on the subject for process, chemical, and pharmaceutical engineers seeking to improve physical interpretability in data-driven models to enable usage that scales with a system and reduce inaccuracies and mismatch issues.

Dr. Chang He is an Associate Professor in the School of Chemical Engineering and Technology, Sun Yat-Sen University. His research focuses on the multi-scale integration, design, optimization, and sustainability of the advanced energy systems.

Dr. Jingzheng Ren is currently an Associate Professor at The Hong Kong Polytechnic University. He received the 2022 Asia-Pacific Economic Cooperation (APEC) Science Prize for Innovation, Research and Education (ASPIRE Prize).

Erscheint lt. Verlag 6.12.2024
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Schlagworte AI-assisted drug design • data driven modeling • Heat Exchangers • high-performance ionic liquids • physics-informed deep learning • physics-informed neural networks • Process design • Reduced-Order Modeling • sparse identification
ISBN-10 3-527-84547-X / 352784547X
ISBN-13 978-3-527-84547-7 / 9783527845477
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 14,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35