Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Mathematical Modeling in Agriculture (eBook)

eBook Download: PDF
2024
462 Seiten
Wiley-Scrivener (Verlag)
978-1-394-23371-7 (ISBN)

Lese- und Medienproben

Mathematical Modeling in Agriculture -
Systemvoraussetzungen
194,99 inkl. MwSt
(CHF 189,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The main goal of the book is to explore the idea behind data modeling in smart agriculture using information and communication technologies and tools to make agricultural practices more functional, fruitful and profitable.

The research in the book looks at the likelihood and level of use of implemented technological components with regard to the adoption of different precision agricultural technologies. To identify the variables affecting farmers' choices to embrace more precise technology, zero-inflated Poisson and negative binomial count data regression models were utilized. Outcomes from the count data analysis of a random sample of various farm operators show that various aspects, including farm dimension, farmer demographics, soil texture, urban impacts, farmer position of liabilities, and position of the farm in a state, were significantly associated with the approval severity and likelihood of precision farming technologies.

Farm management information systems (FMIS) have constantly advanced in complexity as they have incorporated new technology, the most recent of which is the internet. However, few FMIS have fully tapped into the internet's possibilities, and the newly developing idea of precision agriculture receives little or no support in the FMIS that are now being sold. FMIS for precision agriculture must meet a few more criteria beyond those of regular FMIS, which increases the technological complexity of these systems' deployment in a number of ways. In order to construct an FMIS that meet these extra needs, the authors here evaluated various cutting-edge web-based methods. The goal was to determine the requirements that precision agriculture placed on FMIS.

Sabyasachi Pramanik, PhD, is an associate professor in the Department of Computer Science and Engineering, Haldia Institute of Technology, India. He has many publications in technical conferences and journals, as well as online book chapter contributions. He is also a reviewer for and on numerous editorial boards for technical journals. He has authored one book and edited nine books, including books for Scrivener Publishing.

Niranjanamurthy M., PhD, is an assistant professor in the Department of Artificial Intelligence and Machine Learning, BMS Institute of Technology and Management, Yelahanka, Bengalore, India. He has over ten years of teaching experience and two years of industry experience as a software engineer. He has published five books and is working on numerous books for Scrivener Publishing. He has published 54 research papers in various scientific refereed journals and filed ten patents, with two granted so far. He is a reviewer for more than 20 journals and has received numerous awards.

Ankur Gupta, MTech, is an assistant professor in the Department of Computer Science and Engineering at Vaish College of Engineering, Rohtak, India. He has many publications in scientific journals and conferences and online book chapter contributions.

Ahmed J. Obaid, PhD, is an assistant professor in the Department of Computer Science, Faculty of Computer Science and Mathematics, University of Kufa, Iraq. He has over 14 years of teaching experience and is a board member on numerous scientific journals. He has published over 75 journal research articles, five book chapters, 15 conference papers, 10 conference proceedings, and has edited eight books.


The main goal of the book is to explore the idea behind data modeling in smart agriculture using information and communication technologies and tools to make agricultural practices more functional, fruitful and profitable. The research in the book looks at the likelihood and level of use of implemented technological components with regard to the adoption of different precision agricultural technologies. To identify the variables affecting farmers choices to embrace more precise technology, zero-inflated Poisson and negative binomial count data regression models were utilized. Outcomes from the count data analysis of a random sample of various farm operators show that various aspects, including farm dimension, farmer demographics, soil texture, urban impacts, farmer position of liabilities, and position of the farm in a state, were significantly associated with the approval severity and likelihood of precision farming technologies. Farm management information systems (FMIS) have constantly advanced in complexity as they have incorporated new technology, the most recent of which is the internet. However, few FMIS have fully tapped into the internet s possibilities, and the newly developing idea of precision agriculture receives little or no support in the FMIS that are now being sold. FMIS for precision agriculture must meet a few more criteria beyond those of regular FMIS, which increases the technological complexity of these systems deployment in a number of ways. In order to construct an FMIS that meet these extra needs, the authors here evaluated various cutting-edge web-based methods. The goal was to determine the requirements that precision agriculture placed on FMIS.
Erscheint lt. Verlag 2.10.2024
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Weitere Fachgebiete Land- / Forstwirtschaft / Fischerei
ISBN-10 1-394-23371-X / 139423371X
ISBN-13 978-1-394-23371-7 / 9781394233717
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 45,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich