Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Synergy of Bio-Chemical Processes for Photocatalytic and Photoelectrochemical Wastewater Treatment (eBook)

eBook Download: PDF
2024
285 Seiten
Wiley (Verlag)
978-1-394-19789-7 (ISBN)

Lese- und Medienproben

Synergy of Bio-Chemical Processes for Photocatalytic and Photoelectrochemical Wastewater Treatment -
Systemvoraussetzungen
168,99 inkl. MwSt
(CHF 165,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The concept of photoelectrochemistry applied to microbial fuel cells could be the future of sustainable wastewater treatment and for hydrogen recovery as a valuable energy source.

With the increase of recalcitrant organic pollutants in industrial wastewater, the need for a sustainable bio-electrochemical process has become pressing in order to ensure that treatment processes are coupled with some beneficiation advantages. Microbial fuel cells combine wastewater treatment and biological power generation. However, the resistance of these organic pollutants to biological degradation requires further adjustment of the system to improve sustainability through maximization of energy production.

Solar energy conversion using photocatalysis has drawn huge attention for its potential to provide renewable and sustainable energy. Furthermore, it might be the solution to serious environmental and energy-related problems. It has been widely understood for several years that the top global issues today are concerned with securing a clean supply of water and ensuring a reasonable price for clean energy. Researchers are studying advanced materials and processes to produce clean, renewable hydrogen fuel through photocatalytic and photoelectrocatalytic water splitting, as well as to reduce carbon dioxide from the air into fuels through photocatalysis. Limited progress is occurring in these areas.

The purpose of this book is to comprehensively cover the evolvement in the conceptualization and application of photocatalytic fuel cells, as well as make a critical assessment of the contribution in the field of sustainable wastewater treatment and renewable energy production.

This book contains nine specialized chapters that provide comprehensive coverage of the design of photocatalytic fuel cells and their applications, including environmental remediation, chemical synthesis, green energy generation, model simulation for scaling up processes and implementation, and most importantly maximization of hydrogen evolution, recovery, and applications.

Audience

A wide audience of academics, industrial researchers, and graduate students working in heterogeneous photocatalysis, fuel cells, sustainable chemistry, nanotechnology, chemical engineering, environmental protection, and surfaces and interfaces, will find this book useful. The book is also important for professionals, namely environmental managers, water treatment plants managers and operators, water authorities, government regulatory bodies officers, and environmentalists.

Sadanand Pandey, PhD, is a professor in the School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, India. He was a Kothari fellow at the prestigious Indian Institute of Science (2011-2013) and NRF scientist at the University of Johannesburg, South Africa (2014-2018). He has published more than 100 SCI Journal articles, many book chapters, and several contributions to scientific meetings and co-edited books. His research activities span the disciplines of polymer chemistry, materials science, nanotechnology, and sustainable and advanced materials.

Elvis Fosso-Kankeu, PhD, is a professor in the Department of Metallurgy at the University of Johannesburg, South Africa. He has published more than 250 papers including journal articles, books, book chapters and conference proceeding papers. He has won several research awards including the National Science and Technology Forum Award in South Africa. His research focuses on the hydrometallurgical extraction of metal from solid phases, prediction of pollutants dispersion from industrial areas, and development of effective and sustainable methods for the removal of inorganic and organic pollutants from polluted water.

Soumya Pandit, PhD, is a senior assistant professor at Sharda University, Greater Noida, Delhi, India. He pursued his doctoral studies from the Department of Biotechnology, Indian Institute of Technology, Kharagpur in 2015. He has authored more than 70 research and review papers in peer-reviewed journals, and his research areas include microbial electrochemical systems for bioenergy harvesting, bacterial biofilm and biofouling study, biohythane production, microalgal biomass production for biofuel, nanomaterial synthesis and application in bioenergy harvesting and biofouling mitigation.


The concept of photoelectrochemistry applied to microbial fuel cells could be the future of sustainable wastewater treatment and for hydrogen recovery as a valuable energy source. With the increase of recalcitrant organic pollutants in industrial wastewater, the need for a sustainable bio-electrochemical process has become pressing in order to ensure that treatment processes are coupled with some beneficiation advantages. Microbial fuel cells combine wastewater treatment and biological power generation. However, the resistance of these organic pollutants to biological degradation requires further adjustment of the system to improve sustainability through maximization of energy production. Solar energy conversion using photocatalysis has drawn huge attention for its potential to provide renewable and sustainable energy. Furthermore, it might be the solution to serious environmental and energy-related problems. It has been widely understood for several years that the top global issues today are concerned with securing a clean supply of water and ensuring a reasonable price for clean energy. Researchers are studying advanced materials and processes to produce clean, renewable hydrogen fuel through photocatalytic and photoelectrocatalytic water splitting, as well as to reduce carbon dioxide from the air into fuels through photocatalysis. Limited progress is occurring in these areas. The purpose of this book is to comprehensively cover the evolvement in the conceptualization and application of photocatalytic fuel cells, as well as make a critical assessment of the contribution in the field of sustainable wastewater treatment and renewable energy production. This book contains nine specialized chapters that provide comprehensive coverage of the design of photocatalytic fuel cells and their applications, including environmental remediation, chemical synthesis, green energy generation, model simulation for scaling up processes and implementation, and most importantly maximization of hydrogen evolution, recovery, and applications. Audience A wide audience of academics, industrial researchers, and graduate students working in heterogeneous photocatalysis, fuel cells, sustainable chemistry, nanotechnology, chemical engineering, environmental protection, and surfaces and interfaces, will find this book useful. The book is also important for professionals, namely environmental managers, water treatment plants managers and operators, water authorities, government regulatory bodies officers, and environmentalists.
Erscheint lt. Verlag 6.9.2024
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
Schlagworte Doping and Modification of Photocatalyst • Electricity Generation • Metal Doping of Semiconductors for Improving Photoactivity • Methodologies for Innovative Synthesis and Characterization • microbial degradation • microbial fuel cells • Photoanode • Photocatalytic degradation • Photocatalytic Fuel Cells • Photocatalytic Nanomaterials • Photocathods • photoelectrodes • Solar energy conversion • Visible-Light Photocatalysts
ISBN-10 1-394-19789-6 / 1394197896
ISBN-13 978-1-394-19789-7 / 9781394197897
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 53,65
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
CHF 58,55

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
CHF 75,20