Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Process Design for Cryogenics -  Alexander Alekseev

Process Design for Cryogenics (eBook)

eBook Download: EPUB
2024 | 1. Auflage
528 Seiten
Wiley-VCH (Verlag)
978-3-527-81562-3 (ISBN)
Systemvoraussetzungen
133,99 inkl. MwSt
(CHF 129,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Up-to-date overview of the method for producing the main industrial gases

This book covers process design for cryogenic processes like air separation, natural gas liquefaction, and hydrogen and helium liquefaction. It offers an overview of the basics of cryogenics and information on process design for modern industrial plants. Throughout, the book helps readers visualize the theories of thermodynamics related to cryogenics in practice. A central concept in the book is the connection between the theoretical world of process design and the real limitations given by available hardware components and systems.

Sample topics covered in Process Design for Cryogenics include:

  • Cryogenic gases like nitrogen, oxygen, argon, neon, hydrogen, helium, and methane
  • Thermodynamics
  • Typical cryogenic refrigeration processes, including the classic Joule Thomson process, the contemporary mixed-gas Joule Thomson process, and expander-based processes like Brayton and Claude cycles
  • Helium and hydrogen liquefaction and air separation

Process Design for Cryogenics is a comprehensive must-have resource for engineers and scientists working in academia and industry on cryogenic processes.

Alexander Alekseev is a senior innovation manager at the Linde Group (Germany). He studied at Moscow Power Engineering Institute (Russia) and completed his PhD at the Technical University of Dresden (Germany). He then worked at Stanford University (USA) as a guest scientist and at Messer Cryotherm (Germany), before joining the Linde Group in 2005. Since 2012 he is also a honorary Professor at the Technical University of Munich (Germany).

Symbols, Signs, and Abbreviations


Latin Symbols


Symbol Description Example of units
COP coefficient of performance
Cp heat capacity at constant pressure J/K
cp mass [or molar] specific heat capacity at constant pressure J/(kg K)
J/(mol K)
Cv heat capacity at constant volume J/K
J/K
cv mass [or molar] specific heat capacity at constant volume J/(kg K)
J/(mol K)
D exergy loss J, kWh
exergy loss flow W, kW
E exergy J
Ė exergy flow W
e mass [or molar] specific exergy J/kg
J/mol
H enthalpy J, kWh
enthalpy flow W, kW
h mass [or molar] specific enthalpy J/kg
J/mol
hb mass [or molar] specific enthalpy at the boiling point J/kg
J/mol
hd mass [or molar] specific enthalpy at the dew point J/kg
J/mol
m mass kg
mass flow or mass flowrate kg/s
M or Mr molecular weight g/mol
MTD mean temperature difference in heat exchanger K
LTD logarithmic temperature difference in heat exchanger K
LF liquid fraction = molar [or mass] fraction of liquid in a two-phase fluid/material stream
N molar amount of substance mol
molar flow or molar flowrate mol/s
Nm3/h
p pressure bar
ps boiling pressure or saturation pressure or vapor pressure bar
P power as mechanical or electric power W, kW
PEXP mechanical power generated by an expander W, kW
PCOMP mechanical power required for driving a compressor W, kW
Q heat J, kWh
heat flow W, kW
o cooling capacity (or cooling power) of a refrigerator W, kW
amb waste heat rejected into environment/ambient (to cooling air or cooling water) W, kW
heat flow, transferred from warm side/fluid to cold side/fluid in a heat exchanger = heat exchanger duty W, kW
is heat flow through non-ideal thermal insulation W, kW
q mass [or molar] specific heat J/kg
mass [or molar] specific heat flow W/kg
Rm universal gas constant R = 8.314 J/(mol K) J/(mol K)
S entropy J/K
entropy flow W/K
s mass [or molar] specific entropy J/(kg K)
J/(mol K)
sb mass [or molar] specific entropy at the boiling point J/(kg K)
J/(mol K)
sd mass [or molar] specific entropy at the dew point J/(kg K)
J/(mol K)
T temperature K
Ts boiling temperature or saturation temperature K
To cooling temperature – temperature of the object being cooled K
Tamb ambient temperature = environment temperature or room temperature K
Tc critical temperature K
u fluid velocity m/s
VF vapor fraction = molar [or mass] fraction of liquid in a two-phase fluid/material stream mol/mol
or kg/kg
W mechanical work J, kWh
xi molar [or mass] fraction of a component in liquid mixture mol/mol
kg/kg
yi molar [or mass] fraction of a component in gaseous/vapor mixture mol/mol
kg/kg
zi molar [or mass] fraction of a component in a mixture mol/mol
kg/kg

Greek Symbols


γ gamma = heat capacity ratio cp/cv = isentropic exponent for an ideal gas
ε synonymous to coefficient of performance COP
κ = κ kappa = isentropic exponent for a real gas
μ Joule–Thomson coefficient K/bar
μ in chapter 4.4.1 it is used for chemical potential J/mol
η efficiency
ηe exergy efficiency = Carnot efficiency
ηs isentropic efficiency of a compressor stage or expander stage
ηT isothermic efficiency of a multistage compressor
ɳLIQ efficiency of a liquefier
π pressure ratio in an expander or a compressor
ρ density of fluid kg/m3
ϑ temperature in °C °C
λ thermal heat conductivity W/(m K)
Σ sum

Mixed Symbols


Δhv molar [or mass] enthalpy of vaporization J/kg
J/mol
ΔWE enthalpy [flow] difference at the warm end of a heat exchanger kW
ΔS entropy rise J/K
Δs specific entropy rise J/(mol K)
ΔT temperature difference K
ΔTmin minimal temperature difference in a heat exchanger K
ΔTmax maximal temperature difference in a heat exchanger K
ΔTCE temperature difference at the cold end of a heat exchanger K
ΔTWE temperature difference at the warm end of a heat exchanger K
Tλ temperature at λ – point (for liquid helium) K

Subscripts


amb used for ambient/environment conditions
c used for cold objects (cold material streams, cold expanders and similar)
c sometimes relates to critical states, for example, critical temperature Tc or critical pressure pc
Carnot relates to Carnot process or generally to a reversible process
COMP relates to compressor
...
EXP relates to expander

Erscheint lt. Verlag 28.8.2024
Sprache englisch
Themenwelt Naturwissenschaften Chemie
ISBN-10 3-527-81562-7 / 3527815627
ISBN-13 978-3-527-81562-3 / 9783527815623
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 70,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35