Process Integration for Resource Conservation
CRC Press (Verlag)
978-1-032-00393-1 (ISBN)
- Noch nicht erschienen (ca. Februar 2025)
- Versandkostenfrei
- Auch auf Rechnung
- Artikel merken
To achieve environmental sustainability in industrial plants, resource conservation activities such as material recovery have begun incorporating process integration techniques for reusing and recycling water, utility gases, solvents, and solid waste. Process Integration for Resource Conservation presents state-of-the-art, cost-effective techniques, including pinch analysis and mathematical optimization, for numerous conservation problems. The Second Edition of this best-seller adds new chapters on heat integration and retrofitting of resource conservation networks and features multiple optimization examples via downloadable MS Excel spreadsheets.
• Emphasizes the goal of setting performance targets ahead of detailed design following the holistic philosophy of process integration
• Explains various industrial examples step by step and offers demo software and other materials online
• Features a wealth of industrial case studies
• Adds chapters on heat integration, combined heat and power, heat-integrated water network, and retrofit of resource conservation network
• Adds new optimization examples and downloadable MS Excel files on superstructural approaches and automated targeting models for direct reuse, recycle, and regeneration
Ideal for students preparing for real-world work as well as industrial practitioners in chemical processing, the text provides a systematic guide to the latest process integration techniques for performing material recovery in process plants. The book features a solutions manual, lecture slides, and figure slides for adopting professors to use in their courses.
Dominic C.Y. Foo, Ph.D., P.E., is a Professor of Process Design and Integration and the founding director of the Centre for Green Technologies at the University of Nottingham Malaysia. He is a Fellow of the Academy of Sciences Malaysia (ASM), Fellow of the Institution of Chemical Engineers (IChemE), Fellow of the Institution of Engineers Malaysia (IEM). Professor Foo is the Editor-in-Chief for Process Integration and Optimization for Sustainability, Subject Editor for Process Safety & Environmental Protection, and editorial board members for several other renowned journals. Professor Foo has authored more than 220 journal papers and made more than 270 conference presentations. He has been a recipient of the 2019 Innovator of the Year Award from the IChemE and the Young Engineer Award from the IEM, Outstanding Asian Researcher and Engineer 2013 from the Society of Chemical Engineers, Japan, 2016 Top Research Scientist Malaysia 2016 from ASM, and World Top 2% Science of the Stanford List since 2021.
1. Introduction. 2. Data Extraction for Resource Conservation. 3. Graphical Targeting Techniques for Direct Reuse/Recycle. 4. Algebraic Targeting Techniques for Direct Reuse/Recycle. 5. Automated Targeting Model for Direct Reuse/Recycle Networks. 6. Automated Targeting Model for Material Regeneration and Pretreatment Networks. 7. Process Changes for Resource Conservation Networks. 8. Network Design and Evolution Techniques. 9. Synthesis of Resource Conservation Networks: A Superstructural Approach. 10. Extended Application: Synthesis of Inter-Plant Resource Conservation Network. 11. Extended Application: Synthesis of Batch Resource Conservation Network. 12. Extended Application: Retrofit of Resource Conservation Network. 13. Synthesis of Heat Exchanger Network. 14. Combined Heat and Power (CHP). 15. Extended Application: Synthesis of Heat-Integrated Water Network.
Erscheint lt. Verlag | 15.2.2025 |
---|---|
Reihe/Serie | Green Chemistry and Chemical Engineering |
Zusatzinfo | 154 Tables, black and white; 280 Line drawings, black and white; 56 Halftones, black and white; 336 Illustrations, black and white |
Verlagsort | London |
Sprache | englisch |
Maße | 156 x 234 mm |
Themenwelt | Naturwissenschaften ► Biologie ► Ökologie / Naturschutz |
Naturwissenschaften ► Chemie ► Technische Chemie | |
Technik ► Bauwesen | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 1-032-00393-6 / 1032003936 |
ISBN-13 | 978-1-032-00393-1 / 9781032003931 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich