Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Random Dynamical Systems - Ludwig Arnold

Random Dynamical Systems

(Autor)

Buch | Hardcover
XV, 586 Seiten
1998 | 1998
Springer Berlin (Verlag)
978-3-540-63758-5 (ISBN)
CHF 194,70 inkl. MwSt
Background and Scope of the Book This book continues, extends, and unites various developments in the intersection of probability theory and dynamical systems. I will briefly outline the background of the book, thus placing it in a systematic and historical context and tradition. Roughly speaking, a random dynamical system is a combination of a measure-preserving dynamical system in the sense of ergodic theory, (D,F,lP', (B(t))tE'lf), 'II'= JR+, IR, z+, Z, with a smooth (or topological) dy namical system, typically generated by a differential or difference equation :i: = f(x) or Xn+l = tp(x.,), to a random differential equation :i: = f(B(t)w,x) or random difference equation Xn+l = tp(B(n)w, Xn)· Both components have been very well investigated separately. However, a symbiosis of them leads to a new research program which has only partly been carried out. As we will see, it also leads to new problems which do not emerge if one only looks at ergodic theory and smooth or topological dynam ics separately. From a dynamical systems point of view this book just deals with those dynamical systems that have a measure-preserving dynamical system as a factor (or, the other way around, are extensions of such a factor). As there is an invariant measure on the factor, ergodic theory is always involved.

I. Random Dynamical Systems and Their Generators.- 1. Basic Definitions. Invariant Measures.- 2. Generation.- II. Multiplicative Ergodic Theory.- 3. The Multiplicative Ergodic Theorem in Euclidean Space.- 4. The Multiplicative Ergodic Theorem on Bundles and Manifolds.- 5. The MET for Related Linear and Affine RDS.- 6. RDS on Homogeneous Spaces of the General Linear Group.- III. Smooth Random Dynamical Systems.- 7. Invariant Manifolds.- 8. Normal Forms.- 9. Bifurcation Theory.- IV. Appendices.- Appendix A. Measurable Dynamical Systems.- A.1 Ergodic Theory.- A.2 Stochastic Processes and Dynamical Systems.- A.3 Stationary Processes.- A.4 Markov Processes.- Appendix B. Smooth Dynamical Systems.- B.1 Two-Parameter Flows on a Manifold.- B.4 Autonomous Case: Dynamical Systems.- B.5 Vector Fields and Flows on Manifolds.- References.

"Ludwig Arnold's monograph is going to make a very big impact for many years to come."
DMV Jahresbericht, 103. Band, Heft 2, July 2001

Erscheint lt. Verlag 19.8.1998
Reihe/Serie Springer Monographs in Mathematics
Zusatzinfo XV, 586 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 1025 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie
Schlagworte cocycles • Dynamisches System • Dynamische Systeme • glatte Ergodentheorie • Kozykel • linear algebra • Markov • measure • multiplicative ergodic theory • multiplikative Ergodentheorie • random dynamical systems • smooth ergodic theory • stochastic bifurcation theory • stochastische Bifurkationstheorie • Transformation • zufällige dynamische Systeme • Zufall / Random (Statistik) • Zufall (Statistik)
ISBN-10 3-540-63758-3 / 3540637583
ISBN-13 978-3-540-63758-5 / 9783540637585
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
CHF 109,95