Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Many-Body Schrödinger Equation - Hiroshi Isozaki

Many-Body Schrödinger Equation (eBook)

Scattering Theory and Eigenfunction Expansions

(Autor)

eBook Download: PDF
2023 | 2023
XVII, 399 Seiten
Springer Nature Singapore (Verlag)
978-981-99-3704-2 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Spectral properties for Schrödinger operators are a major concern in quantum mechanics both in physics and in mathematics. For the few-particle systems, we now have sufficient knowledge for two-body systems, although much less is known about N-body systems. The asymptotic completeness of time-dependent wave operators was proved in the 1980s and was a landmark in the study of the N-body problem. However, many problems are left open for the stationary N-particle equation. Due to the recent rapid development of computer power, it is now possible to compute the three-body scattering problem numerically, in which the stationary formulation of scattering is used. This means that the stationary theory for N-body Schrödinger operators remains an important problem of quantum mechanics. It is stressed here that for the three-body problem, we have a satisfactory stationary theory. This book is devoted to the mathematical aspects of the N-body problem from both the time-dependent and stationary viewpoints. The main themes are:
(1) The Mourre theory for the resolvent of self-adjoint operators
(2) Two-body Schrödinger operators-Time-dependent approach and stationary approach
(3) Time-dependent approach to N-body Schrödinger operators
(4) Eigenfunction expansion theory for three-body Schrödinger operators
Compared with existing books for the many-body problem, the salient feature of this book consists in the stationary scattering theory (4). The eigenfunction expansion theorem is the physical basis of Schrödinger operators. Recently, it proved to be the basis of inverse problems of quantum scattering. This book provides necessary background information to understand the physical and mathematical basis of Schrödinger operators and standard knowledge for future development. 

Spectral properties for Schrodinger operators are a major concern in quantum mechanics both in physics and in mathematics. For the few-particle systems, we now have sufficient knowledge for two-body systems, although much less is known about N-body systems. The asymptotic completeness of time-dependent wave operators was proved in the 1980s and was a landmark in the study of the N-body problem. However, many problems are left open for the stationary N-particle equation. Due to the recent rapid development of computer power, it is now possible to compute the three-body scattering problem numerically, in which the stationary formulation of scattering is used. This means that the stationary theory for N-body Schrodinger operators remains an important problem of quantum mechanics. It is stressed here that for the three-body problem, we have a satisfactory stationary theory. This book is devoted to the mathematical aspects of the N-body problem from both the time-dependent and stationary viewpoints. The main themes are:(1) The Mourre theory for the resolvent of self-adjoint operators(2) Two-body Schrodinger operators-Time-dependent approach and stationary approach(3) Time-dependent approach to N-body Schrodinger operators(4) Eigenfunction expansion theory for three-body Schrodinger operatorsCompared with existing books for the many-body problem, the salient feature of this book consists in the stationary scattering theory (4). The eigenfunction expansion theorem is the physical basis of Schrodinger operators. Recently, it proved to be the basis of inverse problems of quantum scattering. This book provides necessary background information to understand the physical and mathematical basis of Schrodinger operators and standard knowledge for future development. 
Erscheint lt. Verlag 27.7.2023
Reihe/Serie Mathematical Physics Studies
Mathematical Physics Studies
Zusatzinfo XVII, 399 p. 10 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie Quantenphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Algebra of commutators • asymptotic completeness • Eigenfunction expansion theory • Mourre theory • radiation condition
ISBN-10 981-99-3704-3 / 9819937043
ISBN-13 978-981-99-3704-2 / 9789819937042
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich